메뉴 건너뛰기




Volumn 34, Issue 4, 2008, Pages 3014-3020

Flexible patient rule induction method for optimizing process variables in discrete type

Author keywords

Data mining; Ordinal data; Process optimization; Rule induction

Indexed keywords

COMPUTER SIMULATION; DATA STRUCTURES; OPTIMIZATION;

EID: 38649131737     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.05.047     Document Type: Article
Times cited : (16)

References (17)
  • 1
    • 0035621007 scopus 로고    scopus 로고
    • Bump hunting for risk: A new data mining tool and its applications
    • Becker U., and Fahrmeir L. Bump hunting for risk: A new data mining tool and its applications. Computational Statistics 16 (2001) 373-386
    • (2001) Computational Statistics , vol.16 , pp. 373-386
    • Becker, U.1    Fahrmeir, L.2
  • 3
    • 38649143287 scopus 로고    scopus 로고
    • Chong, I.-G., & Jun, C.-H., (2005a), Optimization of a large manufacturing process using the patient rule induction method. In Proceedings of 18th international conference on production research, Fisciano, Italy. CD-ROM.
    • Chong, I.-G., & Jun, C.-H., (2005a), Optimization of a large manufacturing process using the patient rule induction method. In Proceedings of 18th international conference on production research, Fisciano, Italy. CD-ROM.
  • 4
    • 21244436700 scopus 로고    scopus 로고
    • Performance of some variable selection methods when multicollinearity is present
    • Chong I.-G., and Jun C.-H. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems 78 (2005) 103-112
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.78 , pp. 103-112
    • Chong, I.-G.1    Jun, C.-H.2
  • 6
    • 0141506115 scopus 로고    scopus 로고
    • Controlling false-negative errors in microarray differential expression analysis: A PRIM approach
    • Cole S.W., Galic Z., and Zack J.A. Controlling false-negative errors in microarray differential expression analysis: A PRIM approach. Bioinformatics 19 (2003) 1808-1816
    • (2003) Bioinformatics , vol.19 , pp. 1808-1816
    • Cole, S.W.1    Galic, Z.2    Zack, J.A.3
  • 8
    • 1842863555 scopus 로고    scopus 로고
    • Cr-pyrope garnets in the lithospheric mantle 2: Compositional populations and their distribution in time and space
    • Griffin W.L., Fisher N.I., Friedman J.H., O'Reilly S.Y., and Ryan C.G. Cr-pyrope garnets in the lithospheric mantle 2: Compositional populations and their distribution in time and space. Geochemistry, Geophysics, Geosystems 3 12 (2002) 1073
    • (2002) Geochemistry, Geophysics, Geosystems , vol.3 , Issue.12 , pp. 1073
    • Griffin, W.L.1    Fisher, N.I.2    Friedman, J.H.3    O'Reilly, S.Y.4    Ryan, C.G.5
  • 10
    • 0005486231 scopus 로고    scopus 로고
    • Data surveyor: Searching the nuggets in parallel
    • Fayyad U.M., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R. (Eds), AAAI/MIT Press, California
    • Holsheimer M., Kersten M., and Siebes A. Data surveyor: Searching the nuggets in parallel. In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R. (Eds). Advances in knowledge discovery and data mining (1996), AAAI/MIT Press, California 447-467
    • (1996) Advances in knowledge discovery and data mining , pp. 447-467
    • Holsheimer, M.1    Kersten, M.2    Siebes, A.3
  • 11
    • 33751429157 scopus 로고    scopus 로고
    • A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process
    • Iqbal A., He N., Li L., and Dar N.U. A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process. Expert Systems with Applications 31 4 (2007) 1020-1027
    • (2007) Expert Systems with Applications , vol.31 , Issue.4 , pp. 1020-1027
    • Iqbal, A.1    He, N.2    Li, L.3    Dar, N.U.4
  • 12
    • 27644473876 scopus 로고    scopus 로고
    • Responder identification in clinical trials with censored data
    • Kehl V., and Ulm K. Responder identification in clinical trials with censored data. Computational Statistics and Data Analysis 50 (2006) 1338-1355
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 1338-1355
    • Kehl, V.1    Ulm, K.2
  • 13
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil splits in satellite radar images
    • Kubat M., Holte R.C., and Matwin S. Machine learning for the detection of oil splits in satellite radar images. Machine Learning 30 (1998) 195-215
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 16
    • 0043063999 scopus 로고    scopus 로고
    • Robust optimization of experimentally derived objective functions
    • Xu D., and Albin S.L. Robust optimization of experimentally derived objective functions. IIE Transactions 35 (2003) 793-802
    • (2003) IIE Transactions , vol.35 , pp. 793-802
    • Xu, D.1    Albin, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.