메뉴 건너뛰기




Volumn 34, Issue 4, 2008, Pages 2905-2920

An improved fuzzy neural network based on T-S model

Author keywords

Fuzzy neural network; Fuzzy space; Rule set; Takagi Sugeno model

Indexed keywords

CLUSTER ANALYSIS; COMPUTER SIMULATION; LINGUISTICS; MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS;

EID: 38649102450     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.05.020     Document Type: Article
Times cited : (61)

References (30)
  • 1
    • 0037118553 scopus 로고    scopus 로고
    • Linguistic neurocomputing: the design of neural networks in the framework of fuzzy sets
    • Bortolan G., and Pedrycz W. Linguistic neurocomputing: the design of neural networks in the framework of fuzzy sets. Fuzzy Sets and Systems 128 (2002) 389-412
    • (2002) Fuzzy Sets and Systems , vol.128 , pp. 389-412
    • Bortolan, G.1    Pedrycz, W.2
  • 3
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems 2 3 (1994) 267-278
    • (1994) Journal of Intelligent & Fuzzy Systems , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 4
    • 16444375325 scopus 로고    scopus 로고
    • Optimum bid markup calculation using neurofuzzy systems and multidimensional risk analysis algorithm
    • Christodoulou S., and ASCE A.M. Optimum bid markup calculation using neurofuzzy systems and multidimensional risk analysis algorithm. Journal of Computing in Civil Engineering 18 4 (2004) 322-330
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.4 , pp. 322-330
    • Christodoulou, S.1    ASCE, A.M.2
  • 6
    • 0030103196 scopus 로고    scopus 로고
    • A strategy of knowledge elicitation for developing an integrated bidding/production management expert system for the precast industry
    • Dawood N.N. A strategy of knowledge elicitation for developing an integrated bidding/production management expert system for the precast industry. Advances in Engineering Software 25 2 (1996) 225-234
    • (1996) Advances in Engineering Software , vol.25 , Issue.2 , pp. 225-234
    • Dawood, N.N.1
  • 7
    • 0034153033 scopus 로고    scopus 로고
    • A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis
    • Fiordaliso A. A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Sets and Systems 118 3 (2001) 307-318
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.3 , pp. 307-318
    • Fiordaliso, A.1
  • 8
    • 0001748017 scopus 로고
    • A competitive bidding strategy
    • Friedman L. A competitive bidding strategy. Operations Research 4 1 (1956) 104-112
    • (1956) Operations Research , vol.4 , Issue.1 , pp. 104-112
    • Friedman, L.1
  • 9
    • 0002268578 scopus 로고
    • Bidding strategies and probabilities
    • Gates M. Bidding strategies and probabilities. Journal of the Construction Division 93 1 (1967) 75-107
    • (1967) Journal of the Construction Division , vol.93 , Issue.1 , pp. 75-107
    • Gates, M.1
  • 10
    • 0042515112 scopus 로고
    • A bidding strategy based on ESPE
    • Gates M. A bidding strategy based on ESPE. Cost Engineering 25 (1983) 27-35
    • (1983) Cost Engineering , vol.25 , pp. 27-35
    • Gates, M.1
  • 11
    • 33847148066 scopus 로고    scopus 로고
    • Han, M., Fan, Y., & Guo, W. (2005). A modified neural network based on subtractive clustering for bidding system, IEEE international conference on neural networks and brain (pp. 128-133). Beijing, China.
    • Han, M., Fan, Y., & Guo, W. (2005). A modified neural network based on subtractive clustering for bidding system, IEEE international conference on neural networks and brain (pp. 128-133). Beijing, China.
  • 13
    • 0035897963 scopus 로고    scopus 로고
    • Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules
    • Ishibuchi H., and Nii M. Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules. Fuzzy Sets and Systems 120 (2001) 281-307
    • (2001) Fuzzy Sets and Systems , vol.120 , pp. 281-307
    • Ishibuchi, H.1    Nii, M.2
  • 14
    • 0037119854 scopus 로고    scopus 로고
    • Fuzzified neural network based on fuzzy number operations
    • Li Z., Kevman V., and Ichikawa A. Fuzzified neural network based on fuzzy number operations. Fuzzy Sets and Systems 130 (2002) 291-304
    • (2002) Fuzzy Sets and Systems , vol.130 , pp. 291-304
    • Li, Z.1    Kevman, V.2    Ichikawa, A.3
  • 15
    • 33644984844 scopus 로고    scopus 로고
    • A self-adaptive neural fuzzy network with group-based symbiotic evolution and its prediction applications
    • Lin C.J., and Xu Y.J. A self-adaptive neural fuzzy network with group-based symbiotic evolution and its prediction applications. Fuzzy Sets and Systems 157 (2006) 1036-1056
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1036-1056
    • Lin, C.J.1    Xu, Y.J.2
  • 18
    • 0043092359 scopus 로고    scopus 로고
    • Hybrid identification in fuzzy neural networks
    • Oh S.K., Pedrycz W., and Park H.S. Hybrid identification in fuzzy neural networks. Fuzzy Sets and Systems 138 (2003) 399-426
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 399-426
    • Oh, S.K.1    Pedrycz, W.2    Park, H.S.3
  • 19
    • 15844396189 scopus 로고    scopus 로고
    • Multi-layer hybrid fuzzy polynomial neural networks: a design in the framework of computational intelligence
    • Oh S.K., Pedrycz W., and Park H.S. Multi-layer hybrid fuzzy polynomial neural networks: a design in the framework of computational intelligence. Neurocomputing 64 (2005) 397-431
    • (2005) Neurocomputing , vol.64 , pp. 397-431
    • Oh, S.K.1    Pedrycz, W.2    Park, H.S.3
  • 20
    • 33144477025 scopus 로고    scopus 로고
    • Genetically optimized fuzzy polynomial neural networks
    • Oh S.K., Pedrycz W., and Park H.S. Genetically optimized fuzzy polynomial neural networks. IEEE Transactions on Fuzzy Systems 14 1 (2006) 125-144
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.1 , pp. 125-144
    • Oh, S.K.1    Pedrycz, W.2    Park, H.S.3
  • 21
    • 24644469161 scopus 로고    scopus 로고
    • A TSK-type neurofuzzy network approach to system modeling problems
    • Ouyang C.S., Lee W.J., and Lee S.J. A TSK-type neurofuzzy network approach to system modeling problems. IEEE Transactions on SMC-C 35 4 (2005) 751-767
    • (2005) IEEE Transactions on SMC-C , vol.35 , Issue.4 , pp. 751-767
    • Ouyang, C.S.1    Lee, W.J.2    Lee, S.J.3
  • 22
    • 0037120676 scopus 로고    scopus 로고
    • A GA-based fuzzy modeling approach for generating TSK models
    • Papadakis S.E., and Theocharis J.B. A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Sets and Systems 131 (2002) 121-152
    • (2002) Fuzzy Sets and Systems , vol.131 , pp. 121-152
    • Papadakis, S.E.1    Theocharis, J.B.2
  • 23
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Plamen P.A., and Dimitar P.F. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transaction on SMC-B 34 1 (2004) 484-498
    • (2004) IEEE Transaction on SMC-B , vol.34 , Issue.1 , pp. 484-498
    • Plamen, P.A.1    Dimitar, P.F.2
  • 24
    • 25844530263 scopus 로고    scopus 로고
    • GA-TSKfnn: parameters tuning of fuzzy neural network using genetic algorithms
    • Tang A.M., Quek C., and Ng G.S. GA-TSKfnn: parameters tuning of fuzzy neural network using genetic algorithms. Expert Systems with Applications 29 (2005) 769-781
    • (2005) Expert Systems with Applications , vol.29 , pp. 769-781
    • Tang, A.M.1    Quek, C.2    Ng, G.S.3
  • 25
    • 0037118554 scopus 로고    scopus 로고
    • Unsupervised fuzzy clustering with multi-center clusters
    • Tao C.W. Unsupervised fuzzy clustering with multi-center clusters. Fuzzy Sets and Systems 128 (2002) 305-322
    • (2002) Fuzzy Sets and Systems , vol.128 , pp. 305-322
    • Tao, C.W.1
  • 26
    • 0036737109 scopus 로고    scopus 로고
    • GenSoFNN: a generic self-organizing fuzzy neural network
    • Tung W.L., and Quek C. GenSoFNN: a generic self-organizing fuzzy neural network. IEEE Transactions on Neural Networks 13 5 (2002) 1075-1086
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1075-1086
    • Tung, W.L.1    Quek, C.2
  • 27
    • 0344121699 scopus 로고    scopus 로고
    • A neural network bid/no bid model: the case for contractors in Syria
    • Wanous M., Boussabaine H., and Lewis J. A neural network bid/no bid model: the case for contractors in Syria. Construction Management and Economics 21 7 (2003) 737-744
    • (2003) Construction Management and Economics , vol.21 , Issue.7 , pp. 737-744
    • Wanous, M.1    Boussabaine, H.2    Lewis, J.3
  • 28
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks-a novel approach to function approximation
    • Wu S., and Er M. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Transactions on SMC-B 30 2 (2000) 358-364
    • (2000) IEEE Transactions on SMC-B , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.2
  • 29
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • Yager R., and Filev D. Generation of fuzzy rules by mountain clustering. Journal of Intelligent & Fuzzy Systems 2 3 (1994) 209-219
    • (1994) Journal of Intelligent & Fuzzy Systems , vol.2 , Issue.3 , pp. 209-219
    • Yager, R.1    Filev, D.2
  • 30
    • 3042549361 scopus 로고    scopus 로고
    • Fuzzy identification using fuzzy neural networks with stable learning algorithms
    • Yu W., and Li X. Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Transactions on Fuzzy Systems 12 3 (2004) 411-420
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.3 , pp. 411-420
    • Yu, W.1    Li, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.