메뉴 건너뛰기




Volumn 34, Issue 4, 2008, Pages 2538-2544

Recurrent neural networks employing Lyapunov exponents for analysis of doppler ultrasound signals

Author keywords

Chaotic signal; Doppler ultrasound signals; Lyapunov exponents; Recurrent neural network

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION MAKING; DYNAMICS; FEATURE EXTRACTION; LYAPUNOV FUNCTIONS; ULTRASONIC EFFECTS;

EID: 38649091947     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.04.002     Document Type: Article
Times cited : (11)

References (35)
  • 1
    • 0001731208 scopus 로고
    • Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data
    • Abarbanel H.D.I., Brown R., and Kennel M.B. Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data. International Journal of Modern Physics B 5 9 (1991) 1347-1375
    • (1991) International Journal of Modern Physics B , vol.5 , Issue.9 , pp. 1347-1375
    • Abarbanel, H.D.I.1    Brown, R.2    Kennel, M.B.3
  • 3
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: Between steepest descent and Newton's method. Neural Computation 4 (1992) 141-166
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 4
    • 0018989294 scopus 로고
    • Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them
    • Benettin G., Galgani L., Giorgilli A., and Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Meccanica 15 1 (1980) 9-30
    • (1980) Meccanica , vol.15 , Issue.1 , pp. 9-30
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.-M.4
  • 5
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli M. Nonlinear prediction of chaotic time series. Physica D 35 3 (1989) 335-356
    • (1989) Physica D , vol.35 , Issue.3 , pp. 335-356
    • Casdagli, M.1
  • 6
    • 0034283761 scopus 로고    scopus 로고
    • Efficient training and improved performance of multilayer perception in pattern classification
    • Chaudhuri B.B., and Bhattacharya U. Efficient training and improved performance of multilayer perception in pattern classification. Neurocomputing 34 (2000) 11-27
    • (2000) Neurocomputing , vol.34 , pp. 11-27
    • Chaudhuri, B.B.1    Bhattacharya, U.2
  • 8
    • 0036274563 scopus 로고    scopus 로고
    • New approach for modelling ultrasound blood backscatter signal
    • El-Brawany M.A., and Nassiri D.K. New approach for modelling ultrasound blood backscatter signal. Ultrasound in Medicine & Biology 28 4 (2002) 527-534
    • (2002) Ultrasound in Medicine & Biology , vol.28 , Issue.4 , pp. 527-534
    • El-Brawany, M.A.1    Nassiri, D.K.2
  • 9
    • 0036866880 scopus 로고    scopus 로고
    • Microemboli detection using ultrasound backscatter
    • El-Brawany M.A., and Nassiri D.K. Microemboli detection using ultrasound backscatter. Ultrasound in Medicine & Biology 28 11/12 (2002) 1439-1446
    • (2002) Ultrasound in Medicine & Biology , vol.28 , Issue.11-12 , pp. 1439-1446
    • El-Brawany, M.A.1    Nassiri, D.K.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 14 2 (1990) 179-211
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 12
    • 0034559507 scopus 로고    scopus 로고
    • Investigating the prediction capabilities of the simple recurrent neural network on real temporal sequences
    • Gupta L., and McAvoy M. Investigating the prediction capabilities of the simple recurrent neural network on real temporal sequences. Pattern Recognition 33 12 (2000) 2075-2081
    • (2000) Pattern Recognition , vol.33 , Issue.12 , pp. 2075-2081
    • Gupta, L.1    McAvoy, M.2
  • 13
    • 0034301714 scopus 로고    scopus 로고
    • Classification of temporal sequences via prediction using the simple recurrent neural network
    • Gupta L., McAvoy M., and Phegley J. Classification of temporal sequences via prediction using the simple recurrent neural network. Pattern Recognition 33 10 (2000) 1759-1770
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1759-1770
    • Gupta, L.1    McAvoy, M.2    Phegley, J.3
  • 14
    • 0038359450 scopus 로고    scopus 로고
    • Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network
    • Güler I., and Übeyli E.D. Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Computers in Biology and Medicine 33 4 (2003) 333-343
    • (2003) Computers in Biology and Medicine , vol.33 , Issue.4 , pp. 333-343
    • Güler, I.1    Übeyli, E.D.2
  • 15
    • 9644262694 scopus 로고    scopus 로고
    • Detecting variability of internal carotid arterial Doppler signals by Lyapunov exponents
    • Güler I., and Übeyli E.D. Detecting variability of internal carotid arterial Doppler signals by Lyapunov exponents. Medical Engineering & Physics 26 9 (2004) 763-771
    • (2004) Medical Engineering & Physics , vol.26 , Issue.9 , pp. 763-771
    • Güler, I.1    Übeyli, E.D.2
  • 16
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., and Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 29 3 (2005) 506-514
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 17
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 19
    • 0029191714 scopus 로고
    • Detection of signals in chaos
    • Haykin S., and Li X.B. Detection of signals in chaos. Proceedings of the IEEE 83 1 (1995) 95-122
    • (1995) Proceedings of the IEEE , vol.83 , Issue.1 , pp. 95-122
    • Haykin, S.1    Li, X.B.2
  • 21
    • 0032891587 scopus 로고    scopus 로고
    • Nonlinear analysis of the performance and reliability of wavelet singularity detection based denoising for Doppler ultrasound fetal heart rate signals
    • Papadimitriou S., and Bezerianos A. Nonlinear analysis of the performance and reliability of wavelet singularity detection based denoising for Doppler ultrasound fetal heart rate signals. International Journal of Medical Informatics 53 (1999) 43-60
    • (1999) International Journal of Medical Informatics , vol.53 , pp. 43-60
    • Papadimitriou, S.1    Bezerianos, A.2
  • 22
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • Petrosian A., Prokhorov D., Homan R., Dasheiff R., and Wunsch II D. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30 (2000) 201-218
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dasheiff, R.4    Wunsch II, D.5
  • 23
    • 0034923224 scopus 로고    scopus 로고
    • Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG
    • Petrosian A.A., Prokhorov D.V., Lajara-Nanson W., and Schiffer R.B. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG. Clinical Neurophysiology 112 8 (2001) 1378-1387
    • (2001) Clinical Neurophysiology , vol.112 , Issue.8 , pp. 1378-1387
    • Petrosian, A.A.1    Prokhorov, D.V.2    Lajara-Nanson, W.3    Schiffer, R.B.4
  • 24
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda F.J. Generalization of back-propagation to recurrent neural networks. Physical Review Letters 59 19 (1987) 2229-2232
    • (1987) Physical Review Letters , vol.59 , Issue.19 , pp. 2229-2232
    • Pineda, F.J.1
  • 25
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • Saad E.W., Prokhorov D.V., and Wunsch II D.C. Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks 9 6 (1998) 1456-1470
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch II, D.C.3
  • 26
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • Sano M., and Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Physical Review Letters 55 10 (1985) 1082-1085
    • (1985) Physical Review Letters , vol.55 , Issue.10 , pp. 1082-1085
    • Sano, M.1    Sawada, Y.2
  • 27
    • 1542786173 scopus 로고    scopus 로고
    • Intracranial pressure model in intensive care unit using a simple recurrent neural network through time
    • Shieh J.-S., Chou C.-F., Huang S.-J., and Kao M.-C. Intracranial pressure model in intensive care unit using a simple recurrent neural network through time. Neurocomputing 57 (2004) 239-256
    • (2004) Neurocomputing , vol.57 , pp. 239-256
    • Shieh, J.-S.1    Chou, C.-F.2    Huang, S.-J.3    Kao, M.-C.4
  • 28
    • 0031987311 scopus 로고    scopus 로고
    • A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease
    • Sigel B. A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease. Ultrasound in Medicine & Biology 24 (1998) 169-176
    • (1998) Ultrasound in Medicine & Biology , vol.24 , pp. 169-176
    • Sigel, B.1
  • 29
    • 5444221443 scopus 로고    scopus 로고
    • Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods
    • Übeyli E.D., and Güler I. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods. Computers in Biology and Medicine 34 4 (2004) 293-306
    • (2004) Computers in Biology and Medicine , vol.34 , Issue.4 , pp. 293-306
    • Übeyli, E.D.1    Güler, I.2
  • 30
    • 27744513132 scopus 로고    scopus 로고
    • Feature extraction from Doppler ultrasound signals for automated diagnostic systems
    • Übeyli E.D., and Güler I. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Computers in Biology and Medicine 35 9 (2005) 735-764
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.9 , pp. 735-764
    • Übeyli, E.D.1    Güler, I.2
  • 31
    • 14844350962 scopus 로고    scopus 로고
    • Determining variability of ophthalmic arterial Doppler signals using Lyapunov exponents
    • Übeyli E.D., and Güler I. Determining variability of ophthalmic arterial Doppler signals using Lyapunov exponents. Computers in Biology and Medicine 35 5 (2005) 405-420
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.5 , pp. 405-420
    • Übeyli, E.D.1    Güler, I.2
  • 32
    • 0023733016 scopus 로고
    • A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: Methods and results
    • Vaitkus P.J., Cobbold R.S.C., and Johnston K.W. A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: Methods and results. Ultrasound in Medicine & Biology 14 (1988) 673-688
    • (1988) Ultrasound in Medicine & Biology , vol.14 , pp. 673-688
    • Vaitkus, P.J.1    Cobbold, R.S.C.2    Johnston, K.W.3
  • 33
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf A., Swift J.B., Swinney H.L., and Vastano J.A. Determining Lyapunov exponents from a time series. Physica D 16 3 (1985) 285-317
    • (1985) Physica D , vol.16 , Issue.3 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 35
    • 0033009092 scopus 로고    scopus 로고
    • Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease
    • Wright I.A., and Gough N.A.J. Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease. Ultrasound in Medicine & Biology 24 (1999) 735-743
    • (1999) Ultrasound in Medicine & Biology , vol.24 , pp. 735-743
    • Wright, I.A.1    Gough, N.A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.