메뉴 건너뛰기




Volumn 43, Issue 2, 2008, Pages 727-736

The first and second largest Merrifield-Simmons indices of trees with prescribed pendent vertices

Author keywords

Merrifield Simmons index; Trees with k pendent vertices

Indexed keywords


EID: 38549176069     PISSN: 02599791     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10910-006-9224-4     Document Type: Article
Times cited : (10)

References (17)
  • 1
    • 0032221969 scopus 로고    scopus 로고
    • Bounds on the Fibonacci number of a maximal outerplanar graph
    • 3
    • Alameddine A.F.(1998). Bounds on the Fibonacci number of a maximal outerplanar graph. Fibonacci Q 36(3):206-210
    • (1998) Fibonacci Q , vol.36 , pp. 206-210
    • Alameddine, A.F.1
  • 3
    • 29344466848 scopus 로고
    • Fragmentation formulas for the number of Kekulé structure, Hosoya and Merrifield-Simmons indices and related graph invariants
    • Gutman I.(1990). Fragmentation formulas for the number of Kekulé structure, Hosoya and Merrifield-Simmons indices and related graph invariants. Coll. Sci. Pap. Fac. Sci. Kragujevac 11: 11-18
    • (1990) Coll. Sci. Pap. Fac. Sci. Kragujevac , vol.11 , pp. 11-18
    • Gutman, I.1
  • 5
    • 0346760516 scopus 로고
    • Independent vertex sets in some compound graphs
    • Gutman I.(1992). Independent vertex sets in some compound graphs. Publ. Inst. Math. (Beograd) 52:5-9
    • (1992) Publ. Inst. Math. (Beograd) , vol.52 , pp. 5-9
    • Gutman, I.1
  • 6
    • 0037225809 scopus 로고    scopus 로고
    • The inverse problems for some topological indices in combinatorial chemistry
    • 1
    • Li X., Li Z.,Wang L.(2003). The inverse problems for some topological indices in combinatorial chemistry. J. Comput. Biol. 10(1):47-55
    • (2003) J. Comput. Biol. , vol.10 , pp. 47-55
    • Li, X.1    Li, Z.2    Wang, L.3
  • 8
    • 0041154225 scopus 로고
    • Bipartite graphs can have any number of independent sets, Discr
    • Linek V. (1989). Bipartite graphs can have any number of independent sets, Discr. Math. 76: 131-136
    • (1989) Math. , vol.76 , pp. 131-136
    • Linek, V.1
  • 9
    • 29344436965 scopus 로고    scopus 로고
    • On a conjecture of Merrifield and Simmons
    • Li X.(1996). On a conjecture of Merrifield and Simmons. Australasian J. Comb. 14:15-20
    • (1996) Australasian J. Comb. , vol.14 , pp. 15-20
    • Li, X.1
  • 11
    • 26644436273 scopus 로고
    • Enumeration of structure-sensitive graphical subsets: Theory
    • Merrifield R.E., Simmons H.E.(1981). Enumeration of structure-sensitive graphical subsets: Theory. Proc. Natl. Acad. Sci. USA 78: 692-695
    • (1981) Proc. Natl. Acad. Sci. USA , vol.78 , pp. 692-695
    • Merrifield, R.E.1    Simmons, H.E.2
  • 12
    • 29344448377 scopus 로고
    • Enumeration of structure-sensitive graphical subsets: Theory
    • Merrifield R.E., Simmons H.E.(1981). Enumeration of structure-sensitive graphical subsets: Theory. Proc. Natl. Acad.Sci.USA 78:1329-1332
    • (1981) Proc. Natl. Acad.Sci.USA , vol.78 , pp. 1329-1332
    • Merrifield, R.E.1    Simmons, H.E.2
  • 13
    • 0002042876 scopus 로고
    • Fibonacci numbers of graphs
    • 1
    • Prodinger H., Tichy R.F.(1982). Fibonacci numbers of graphs. Fibonacci Q. 20(1): 16-21
    • (1982) Fibonacci Q. , vol.20 , pp. 16-21
    • Prodinger, H.1    Tichy, R.F.2
  • 14
    • 25644460335 scopus 로고    scopus 로고
    • More examples and couterexamples for a conjecture of Merrifield-Simmons
    • 83
    • Wang Y., Li X., Gutman I.(2001). More examples and couterexamples for a conjecture of Merrifield-Simmons. Publications de L'Institut Math. NS 69(83) :41-50
    • (2001) Publications de l'Institut Math. NS , vol.69 , pp. 41-50
    • Wang, Y.1    Li, X.2    Gutman, I.3
  • 15
    • 37549048599 scopus 로고    scopus 로고
    • On Unicycle graphs with Extremal Merrifield-Simmons index
    • Accepted by
    • H. Wang and H. Hua, On Unicycle graphs with Extremal Merrifield-Simmons index, Accepted by J. Math. Chem.
    • J. Math. Chem.
    • Wang, H.1    Hua, H.2
  • 16
    • 33846457571 scopus 로고    scopus 로고
    • The Merrifield-Simmons indices and Hosoya indices of trees with k pendent vertices
    • Accepted by
    • A. Yu et al., The Merrifield-Simmons indices and Hosoya indices of trees with k pendent vertices. Accepted by J. Math. Chem.
    • J. Math. Chem.
    • Yu, A.1
  • 17
    • 33645949123 scopus 로고    scopus 로고
    • On the Fibonacci Numbers of Trees
    • 1
    • Zhao H., Li X.(2006). On the Fibonacci Numbers of Trees. Fibonacci Q. 44(1): 32-38
    • (2006) Fibonacci Q. , vol.44 , pp. 32-38
    • Zhao, H.1    Li, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.