-
1
-
-
84972526560
-
A Theorem of Myers
-
Ambrose W. (1957). A Theorem of Myers. Duke Math. J. 24: 345-348
-
(1957)
Duke Math. J.
, vol.24
, pp. 345-348
-
-
Ambrose, W.1
-
2
-
-
33747879743
-
Geometry of Ricci solitons
-
Cao H.-D. (2006). Geometry of Ricci solitons. Chinese Ann. Math. Ser. B 27: 121-142
-
(2006)
Chinese Ann. Math. Ser. B
, vol.27
, pp. 121-142
-
-
Cao, H.-D.1
-
3
-
-
33845675847
-
A Myers-type theorem and compact Ricci solitons
-
Derdzinski A. (2006). A Myers-type theorem and compact Ricci solitons. Proc. Am. Math. Soc. 134: 3645-3648
-
(2006)
Proc. Am. Math. Soc.
, vol.134
, pp. 3645-3648
-
-
Derdzinski, A.1
-
7
-
-
3042672574
-
Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons
-
Feldman M., Ilmanen T. and Knopf D. (2003). Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Diff. Geom. 65: 169-209
-
(2003)
J. Diff. Geom.
, vol.65
, pp. 169-209
-
-
Feldman, M.1
Ilmanen, T.2
Knopf, D.3
-
8
-
-
0011504985
-
Nonlinear models in 2 + ε dimensions
-
Friedan D. (1985). Nonlinear models in 2 + ε dimensions. Ann. Phys. 163: 318-419
-
(1985)
Ann. Phys.
, vol.163
, pp. 318-419
-
-
Friedan, D.1
-
9
-
-
84966220264
-
Compactness iteria for Riemannian manifolds
-
Galloway G.J. (1982). Compactness iteria for Riemannian manifolds. Proc. Am. Math. Soc. 84: 106-110
-
(1982)
Proc. Am. Math. Soc.
, vol.84
, pp. 106-110
-
-
Galloway, G.J.1
-
10
-
-
0000872141
-
The Ricci flow on surfaces, mathematics and general relativity
-
Santa Cruz, CA, 1986) Am. Math. Soc., Providence, RI
-
Hamilton, R.S.: The Ricci flow on surfaces, mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, Am. Math. Soc., Providence, RI, pp. 237-262 (1988)
-
(1988)
Contemp. Math.
, vol.71
, pp. 237-262
-
-
Hamilton, R.S.1
-
12
-
-
0040863526
-
Ricci solitons on compact three-manifolds
-
Ivey T. (1993). Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3: 301-307
-
(1993)
Diff. Geom. Appl.
, vol.3
, pp. 301-307
-
-
Ivey, T.1
-
15
-
-
0242350976
-
Some geometric properties of the Bakry-Émery-Ricci tensor
-
Lott J. (2003). Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78: 865-883
-
(2003)
Comment. Math. Helv.
, vol.78
, pp. 865-883
-
-
Lott, J.1
-
16
-
-
84972530314
-
Riemannian manifolds with positive mean curvature
-
Myers S.B. (1941). Riemannian manifolds with positive mean curvature. Duke Math. J. 8: 401-404
-
(1941)
Duke Math. J.
, vol.8
, pp. 401-404
-
-
Myers, S.B.1
|