-
1
-
-
0347963789
-
GTM: The Generative Topographic Mapping
-
Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The Generative Topographic Mapping. Neural Comput. 10(1), 215-234 (1998)
-
(1998)
Neural Comput
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
3
-
-
0344110441
-
Developments of the Generative Topographic Mapping
-
Bishop, C.M., Svensén, M., Williams, C.K.I.: Developments of the Generative Topographic Mapping. Neurocomputing 21(1-3), 203-224 (1998)
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 203-224
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
4
-
-
0041524001
-
Selective smoothing of the Generative Topographic Mapping
-
Vellido, A., El-Deredy, W., Lisboa, P.J.G.: Selective smoothing of the Generative Topographic Mapping. IEEE T. Neural Networ. 14(4), 847-852 (2003)
-
(2003)
IEEE T. Neural Networ
, vol.14
, Issue.4
, pp. 847-852
-
-
Vellido, A.1
El-Deredy, W.2
Lisboa, P.J.G.3
-
5
-
-
3543081155
-
Variational algorithms for approximate Bayesian inference
-
PhD thesis, The Gatsby Computational Neuroscience Unit, Univ. College London
-
Beal, M.: Variational algorithms for approximate Bayesian inference. PhD thesis, The Gatsby Computational Neuroscience Unit, Univ. College London (2003)
-
(2003)
-
-
Beal, M.1
-
6
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
Jakkola, T., Jordan, M.I.: Bayesian parameter estimation via variational methods. Stat. Comput. 10, 25-33 (2000)
-
(2000)
Stat. Comput
, vol.10
, pp. 25-33
-
-
Jakkola, T.1
Jordan, M.I.2
-
7
-
-
0003501215
-
A review of Gaussian random fields and correlation functions
-
Technical Report 917, Norwegian Computing Center, Oslo, Norway
-
Abrahamsen, P.: A review of Gaussian random fields and correlation functions. Technical Report 917, Norwegian Computing Center, Oslo, Norway (1997)
-
(1997)
-
-
Abrahamsen, P.1
-
8
-
-
0034504355
-
Bayesian sampling and ensemble learning in Generative Topographic Mapping
-
Utsugi, A.: Bayesian sampling and ensemble learning in Generative Topographic Mapping. Neural Process. Lett. 12, 277-290 (2000)
-
(2000)
Neural Process. Lett
, vol.12
, pp. 277-290
-
-
Utsugi, A.1
-
10
-
-
0002704818
-
A practical Bayesian framework for back-propagation networks
-
MacKay, D.J.C.: A practical Bayesian framework for back-propagation networks. Neural Comput. 4(3), 448-472 (1992)
-
(1992)
Neural Comput
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
11
-
-
0037262814
-
An introduction to MCMC for machine learning
-
Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5-43 (2003)
-
(2003)
Mach. Learn
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
de Freitas, N.2
Doucet, A.3
Jordan, M.I.4
-
12
-
-
38449102410
-
A variational Bayesian formulation for GTM: Theoretical foundations
-
Technical report, Technical University of Catalonia UPC
-
Olier, I., Vellido, A.: A variational Bayesian formulation for GTM: Theoretical foundations. Technical report, Technical University of Catalonia (UPC) (2007)
-
(2007)
-
-
Olier, I.1
Vellido, A.2
-
13
-
-
4043136951
-
Variational Gaussian process classifiers
-
Gibbs, M., MacKay, D.J.C: Variational Gaussian process classifiers. IEEE T. Neural Networ. 11(6), 1458-1464 (2000)
-
(2000)
IEEE T. Neural Networ
, vol.11
, Issue.6
, pp. 1458-1464
-
-
Gibbs, M.1
MacKay, D.J.C.2
|