메뉴 건너뛰기




Volumn 90, Issue 4, 2003, Pages 859-879

A hybrid estimator in nonlinear and generalised linear mixed effects models

Author keywords

Laplace's method; Large sample theory; Mixed effects model; Monte Carlo integration; Sandwich variance estimator

Indexed keywords


EID: 3843119702     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/90.4.859     Document Type: Article
Times cited : (19)

References (32)
  • 1
    • 0003747347 scopus 로고
    • University of California, San Francisco: NONMEM Project Group
    • BEAL, S. L. & SHEINER, L. B. (1992). NONMEM User's Guide. University of California, San Francisco: NONMEM Project Group.
    • (1992) NONMEM User's Guide
    • Beal, S.L.1    Sheiner, L.B.2
  • 2
    • 0011241944 scopus 로고
    • Approximate inference in generalised linear mixed models
    • BRESLOW, N. E. & CLAYTON, D. G. (1993). Approximate inference in generalised linear mixed models. J. Am. Statist. Assoc. 88, 9-25.
    • (1993) J. Am. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 4
    • 0002407623 scopus 로고
    • Beta-binomial ANOVA for proportions
    • CROWDER, M. J. (1978). Beta-binomial ANOVA for proportions. Appl. Statist. 27, 34-7.
    • (1978) Appl. Statist. , vol.27 , pp. 34-37
    • Crowder, M.J.1
  • 7
    • 0030328027 scopus 로고    scopus 로고
    • Physiological pharmacokinetic analysis using population modeling and informative prior distributions
    • GELMAN, A., BOIS, F. & JIANG, J. (1996); Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Am. Statist. Assoc. 91, 1400-12.
    • (1996) J. Am. Statist. Assoc. , vol.91 , pp. 1400-1412
    • Gelman, A.1    Bois, F.2    Jiang, J.3
  • 8
    • 0000051109 scopus 로고
    • Constrained maximum likelihood for dependent data
    • GEYER, C. J. & THOMPSON, E. A. (1992). Constrained maximum likelihood for dependent data (with Discussion). J. R. Statist. Soc. B 39, 657-99.
    • (1992) J. R. Statist. Soc. B , vol.39 , pp. 657-699
    • Geyer, C.J.1    Thompson, E.A.2
  • 9
    • 0016704147 scopus 로고
    • Best linear unbiased estimation and prediction under a selection model
    • HENDERSON, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423-48.
    • (1975) Biometrics , vol.31 , pp. 423-448
    • Henderson, C.R.1
  • 10
    • 0000289610 scopus 로고
    • Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case
    • HOADLEY, B. (1971). Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. Ann. Math. Statist. 42, 1977-91.
    • (1971) Ann. Math. Statist. , vol.42 , pp. 1977-1991
    • Hoadley, B.1
  • 12
    • 0009906557 scopus 로고    scopus 로고
    • Pointwise and functional approximations in Monte Carlo maximum likelihood estimation
    • KUK, A. Y. C. & CHENG, Y. W. (1999). Pointwise and functional approximations in Monte Carlo maximum likelihood estimation. Statist. Comp. 9, 91-9.
    • (1999) Statist. Comp. , vol.9 , pp. 91-99
    • Kuk, A.Y.C.1    Cheng, Y.W.2
  • 13
    • 3843063309 scopus 로고    scopus 로고
    • Nonparametric estimation in nonlinear mixed effects models
    • LAI, T. L. & SHIH, M. C. (2003). Nonparametric estimation in nonlinear mixed effects models. Biometrika 90, 1-13.
    • (2003) Biometrika , vol.90 , pp. 1-13
    • Lai, T.L.1    Shih, M.C.2
  • 14
    • 84971946982 scopus 로고
    • On efficiency of methods of simulated moments and maximum simulated likelihood estimation of discrete response models
    • LEE, L. F. (1992). On efficiency of methods of simulated moments and maximum simulated likelihood estimation of discrete response models. Economet. Theory 8, 518-52.
    • (1992) Economet. Theory , vol.8 , pp. 518-552
    • Lee, L.F.1
  • 15
    • 84974125683 scopus 로고
    • Asymptotic bias in simulated maximum likelihood estimation of discrete choice models
    • LEE, L. F. (1995). Asymptotic bias in simulated maximum likelihood estimation of discrete choice models. Economet Theory 11, 437-83.
    • (1995) Economet Theory , vol.11 , pp. 437-483
    • Lee, L.F.1
  • 16
    • 85199986075 scopus 로고    scopus 로고
    • Hierarchical generalized linear models
    • LEE, Y. & NELDER, J. A. (1996). Hierarchical generalized linear models (with Discussion). J. R. Statist. Soc. B 58, 619-78.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 17
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • LINDSTROM, M. J. & BATES, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics 46, 673-87.
    • (1990) Biometrics , vol.46 , pp. 673-687
    • Lindstrom, M.J.1    Bates, D.M.2
  • 18
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • MCCULLOCH, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. J. Am. Statist. Assoc. 92, 162-70.
    • (1997) J. Am. Statist. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 19
    • 0000883977 scopus 로고
    • A method of simulated moments for estimation of discrete response models without numerical integration
    • MCFADDEN, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57, 995-1026.
    • (1989) Econometrica , vol.57 , pp. 995-1026
    • McFadden, D.1
  • 20
    • 0038909620 scopus 로고    scopus 로고
    • A Bayesian population model with hierarchical mixture priors applied to blood count data
    • MÜLER, P. & ROSNER, G. L. (1997). A Bayesian population model with hierarchical mixture priors applied to blood count data. J. Am. Statist. Assoc. 92, 1279-92.
    • (1997) J. Am. Statist. Assoc. , vol.92 , pp. 1279-1292
    • Müler, P.1    Rosner, G.L.2
  • 21
    • 0000162978 scopus 로고
    • The effects of mixture distribution misspecification when fitting mixed-effects logistic models
    • NEUHAUS, J. M., HAUCK, W. W. & KALBFLEISCH, J. D. (1992). The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika 79, 755-62.
    • (1992) Biometrika , vol.79 , pp. 755-762
    • Neuhaus, J.M.1    Hauck, W.W.2    Kalbfleisch, J.D.3
  • 22
    • 84988090499 scopus 로고
    • Conditions for consistent estimation in mixed-effects models for binary matched-pairs data
    • NEUHAUS, J. M., KALBFLEISCH, J. D. & HAUCK, W. W. (1994). Conditions for consistent estimation in mixed-effects models for binary matched-pairs data. Can. J. Statist. 22, 139-48.
    • (1994) Can. J. Statist. , vol.22 , pp. 139-148
    • Neuhaus, J.M.1    Kalbfleisch, J.D.2    Hauck, W.W.3
  • 23
    • 0001331135 scopus 로고
    • Simulation and asymptotics of optimization estimators
    • PAKES, A. & POLLARD, D. (1989). Simulation and asymptotics of optimization estimators. Econometrica 51, 1027-57.
    • (1989) Econometrica , vol.51 , pp. 1027-1057
    • Pakes, A.1    Pollard, D.2
  • 24
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • PINHEIRO, J. C. & BATES, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comp. Graph, Statist. 4, 12-35.
    • (1995) J. Comp. Graph, Statist. , vol.4 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 26
    • 0033076076 scopus 로고    scopus 로고
    • Monte Carlo EM with importance reweighting and its applications in random effects models
    • QUINTANA, F. A., LIU, J. S. & DEL PINO, G. E. (1999). Monte Carlo EM with importance reweighting and its applications in random effects models. Comp. Statist. Data Anal. 29, 429-44.
    • (1999) Comp. Statist. Data Anal. , vol.29 , pp. 429-444
    • Quintana, F.A.1    Liu, J.S.2    Del Pino, G.E.3
  • 27
    • 0019289897 scopus 로고
    • Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: Routine pharmacokinetic data
    • SHEINER, L. B. & BEAL, S. L. (1980). Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: Routine pharmacokinetic data. J. Pharmacokin. Biopharm. 8, 553-71.
    • (1980) J. Pharmacokin. Biopharm. , vol.8 , pp. 553-571
    • Sheiner, L.B.1    Beal, S.L.2
  • 28
    • 0000474486 scopus 로고    scopus 로고
    • A note on the use of Laplace's approximation for nonlinear mixed-effects models
    • VONESH, E. F. (1996). A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika 83, 447-52.
    • (1996) Biometrika , vol.83 , pp. 447-452
    • Vonesh, E.F.1
  • 29
    • 0030327432 scopus 로고    scopus 로고
    • The Bayesian modeling of covariates for population pharmacokinetic models
    • WAKEFIELD, J. & BENNETT, J. (1996). The Bayesian modeling of covariates for population pharmacokinetic models. J. Am. Statist. Assoc. 91, 917-27.
    • (1996) J. Am. Statist. Assoc. , vol.91 , pp. 917-927
    • Wakefield, J.1    Bennett, J.2
  • 30
    • 4243839021 scopus 로고
    • Bayesian analysis of linear and nonlinear population models by using the Gibbs sampler
    • WAKEFIELD, J. C., SMITH, A. F. M., RACINE-POON, A. & GELFAND, A. E. (1994). Bayesian analysis of linear and nonlinear population models by using the Gibbs sampler. Appl. Statist. 43, 201-21.
    • (1994) Appl. Statist. , vol.43 , pp. 201-221
    • Wakefield, J.C.1    Smith, A.F.M.2    Racine-Poon, A.3    Gelfand, A.E.4
  • 31
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • WOLFINGER, R. (1993). Laplace's approximation for nonlinear mixed models. Biometrika 80, 791-5.
    • (1993) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.1
  • 32
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A Gibbs sampling approach
    • ZEGER, S. L. & KARIM, M. R. (1991). Generalized linear models with random effects: a Gibbs sampling approach. J. Am. Statist. Assoc. 86, 79-86.
    • (1991) J. Am. Statist. Assoc. , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.