-
1
-
-
0012618901
-
-
G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986) ; B. Drake et al., Science 243, 1586 (1989).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 930
-
-
Binnig, G.1
Quate, C.F.2
Gerber, C.3
-
2
-
-
0024977453
-
-
G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986) ; B. Drake et al., Science 243, 1586 (1989).
-
(1989)
Science
, vol.243
, pp. 1586
-
-
Drake, B.1
-
3
-
-
19044362545
-
-
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 120
-
-
Binnig, G.1
Rohrer, H.2
Gerber, Ch.3
Weibel, E.4
-
5
-
-
0031907408
-
-
E. H. K. Stelzer, J. Microsc. 189, 15 (1997); J. T. Frohn, H. F. Knapp, and A. Stemmer, PNAS 97, 7232 (1999).
-
(1997)
J. Microsc.
, vol.189
, pp. 15
-
-
Stelzer, E.H.K.1
-
6
-
-
0034691185
-
-
E. H. K. Stelzer, J. Microsc. 189, 15 (1997); J. T. Frohn, H. F. Knapp, and A. Stemmer, PNAS 97, 7232 (1999).
-
(1999)
PNAS
, vol.97
, pp. 7232
-
-
Frohn, J.T.1
Knapp, H.F.2
Stemmer, A.3
-
8
-
-
0027290520
-
-
G. D. Danilatos, Microsc. Res. Tech. 25, 354 (1993); E. R. Prack, ibid. 25, 487 (1993); G. D. Danilatos, Adv. Electron. Electron Phys. 71, 109 (1988).
-
(1993)
Microsc. Res. Tech.
, vol.25
, pp. 354
-
-
Danilatos, G.D.1
-
9
-
-
0027185038
-
-
G. D. Danilatos, Microsc. Res. Tech. 25, 354 (1993); E. R. Prack, ibid. 25, 487 (1993); G. D. Danilatos, Adv. Electron. Electron Phys. 71, 109 (1988).
-
(1993)
Microsc. Res. Tech.
, vol.25
, pp. 487
-
-
Prack, E.R.1
-
10
-
-
33947711876
-
-
G. D. Danilatos, Microsc. Res. Tech. 25, 354 (1993); E. R. Prack, ibid. 25, 487 (1993); G. D. Danilatos, Adv. Electron. Electron Phys. 71, 109 (1988).
-
(1988)
Adv. Electron. Electron Phys.
, vol.71
, pp. 109
-
-
Danilatos, G.D.1
-
11
-
-
3843116008
-
-
Ph.D. thesis, University of Cambridge
-
R. F. M. Thornley, Ph.D. thesis, University of Cambridge, 1960.
-
(1960)
-
-
Thornley, R.F.M.1
-
15
-
-
3843076814
-
-
S. Murakami, A. Fukami, K. Fukushima, and A. C. Brown, J. Electron Microsc. 26, 259 (1977).
-
(1977)
J. Electron Microsc.
, vol.26
, pp. 259
-
-
Murakami, S.1
Fukami, A.2
Fukushima, K.3
Brown, A.C.4
-
17
-
-
3843140973
-
-
United States Patent No. 5,406,087
-
Fujiyoshi et al., United States Patent No. 5,406,087 (1995).
-
(1995)
-
-
Fujiyoshi1
-
18
-
-
12144287996
-
-
S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, Proc. Natl. Acad. Sci. U.S.A. 101, 3346 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 3346
-
-
Thiberge, S.1
Nechushtan, A.2
Sprinzak, D.3
Gileadi, O.4
Behar, V.5
Zik, O.6
Chowers, Y.7
Michaeli, S.8
Schlessinger, J.9
Moses, E.10
-
22
-
-
3843138842
-
-
note
-
Faraday cup is constructed of a bulk of carbon connected to ground, with a cavity (2 mm diameter and 3 mm deep) at its top, closed by a Ni plate with an aperture of 10 μm diameter in the middle. The beam enters through the aperture, hits the bottom of the carbon cavity, so that the main beam and practically all scattered electrons are collected.
-
-
-
-
24
-
-
0011970914
-
-
edited by R. Castaing, P. Deschanps, and J. Philibert (Hermann, Paris)
-
H. Bishop, in Proceedings of the Fourth International Conference on X-Ray Optics and Microanalysis, Paris, 1966, edited by R. Castaing, P. Deschanps, and J. Philibert (Hermann, Paris), pp. 153-158.
-
Proceedings of the Fourth International Conference on X-ray Optics and Microanalysis, Paris, 1966
, pp. 153-158
-
-
Bishop, H.1
-
26
-
-
3843086626
-
-
R. G. Mathews, D. J. Stokes, B. L.Thiel, and A. M. Macdonald, Inst. Phys. Conf. Ser. 161, 95 (1999).
-
(1999)
Inst. Phys. Conf. Ser.
, vol.161
, pp. 95
-
-
Mathews, R.G.1
Stokes, D.J.2
Thiel, B.L.3
Macdonald, A.M.4
-
27
-
-
3843071399
-
-
note
-
Field emission source produces a beam of 1 nm size in the best conditions (low current, high energy) and 10 nm the worst. A tungsten filament source produces a beam between 10 and 100 nm (Ref. 17).
-
-
-
-
28
-
-
3843048551
-
-
note
-
The four elements C, H, N, and O make up nearly 99% of the weight of a biological specimen like a cell. The cell is composed of 70% water and 29% organic compounds. About 50% of the atoms in these compounds are H atoms, 24% are C, 24% are O, and 1% are N atoms [B. Alberts et al., Molecular Biology of The Cell (Garland, New York, 1994)]. Given these values, the mean atomic number of a typical organic molecule is 6.72, that of water is 7.22, and for a living cell, it is 7.07. Calculation of the corresponding backscattering coefficient at 20 keV give 0.075 for water, 0.073 for a cell (Ref. 19).
-
-
-
|