메뉴 건너뛰기




Volumn 345, Issue 2, 2008, Pages 136-153

A new method for fault prediction of model-unknown nonlinear system

Author keywords

Density estimation; Fault prediction; Fighter; Neural network; Subspace identification; Tracking control; Unknown nonlinear system

Indexed keywords

CLOSED LOOP SYSTEMS; COMPUTER SIMULATION; FAULT DETECTION; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION;

EID: 38349178629     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2007.07.003     Document Type: Article
Times cited : (17)

References (25)
  • 1
    • 0032216356 scopus 로고    scopus 로고
    • Simplification techniques for EKF computations in fault diagnosis-suboptimal gains
    • Chang C.T., and Hwang J.I. Simplification techniques for EKF computations in fault diagnosis-suboptimal gains. Chem. Eng. Sci. 53 22 (1998) 3853-3862
    • (1998) Chem. Eng. Sci. , vol.53 , Issue.22 , pp. 3853-3862
    • Chang, C.T.1    Hwang, J.I.2
  • 2
    • 0027333735 scopus 로고
    • knowledge-based redundancy for fault diagnosis in process plants
    • Fathi Z., Ramirez W.F., and Korbiez. Analytical J. knowledge-based redundancy for fault diagnosis in process plants. AIChE J. 39 (1993) 42-56
    • (1993) AIChE J. , vol.39 , pp. 42-56
    • Fathi, Z.1    Ramirez, W.F.2    Korbiez. Analytical, J.3
  • 3
    • 0030247195 scopus 로고    scopus 로고
    • Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise with application to parameter estimation and empirical robustness analysis
    • Zhou D.H., and Frank P.M. Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise with application to parameter estimation and empirical robustness analysis. Int. J. Control, 65 2 (1996) 295-370
    • (1996) Int. J. Control , vol.65 , Issue.2 , pp. 295-370
    • Zhou, D.H.1    Frank, P.M.2
  • 4
    • 0032642536 scopus 로고    scopus 로고
    • State estimation for predictive maintenance using Kalman filter
    • Yang S.K., and Liu T.S. State estimation for predictive maintenance using Kalman filter. Reliab. Eng. Syst. Safety 66 1 (1999) 29-39
    • (1999) Reliab. Eng. Syst. Safety , vol.66 , Issue.1 , pp. 29-39
    • Yang, S.K.1    Liu, T.S.2
  • 5
    • 0345920426 scopus 로고    scopus 로고
    • The use of ARIMA models for reliability forecasting and analysis
    • Ho S.L., and Xie M. The use of ARIMA models for reliability forecasting and analysis. Comput. Ind. Eng. 35 1,2 (1998) 213-216
    • (1998) Comput. Ind. Eng. , vol.35 , Issue.1-2 , pp. 213-216
    • Ho, S.L.1    Xie, M.2
  • 6
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Connor J.T., Martin D., and Atlas L.E. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 5 2 (1994) 240-254
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 240-254
    • Connor, J.T.1    Martin, D.2    Atlas, L.E.3
  • 7
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • Tse P.W., and Atherton D.P. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. J. Vibration Acoust. 121 7 (1999) 355-362
    • (1999) J. Vibration Acoust. , vol.121 , Issue.7 , pp. 355-362
    • Tse, P.W.1    Atherton, D.P.2
  • 8
    • 0141849042 scopus 로고    scopus 로고
    • The Box-Jenkins analysis and neural networks: prediction and time series modelling
    • BuHamra S., Smaoui N., and Gabr M. The Box-Jenkins analysis and neural networks: prediction and time series modelling. Appl. Math. Model. 27 4 (2003) 805-815
    • (2003) Appl. Math. Model. , vol.27 , Issue.4 , pp. 805-815
    • BuHamra, S.1    Smaoui, N.2    Gabr, M.3
  • 9
    • 0035441349 scopus 로고    scopus 로고
    • Prediction of noisy chaotic time series using an optimal radial basis function neural network
    • Leung H., Lo T., and Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Networks 12 5 (2001) 1163-1172
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.5 , pp. 1163-1172
    • Leung, H.1    Lo, T.2    Wang, S.3
  • 10
    • 0028330583 scopus 로고
    • N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems
    • Van Overschee P., and De Moor B. N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems. Automatica 30 (1994) 75-93
    • (1994) Automatica , vol.30 , pp. 75-93
    • Van Overschee, P.1    De Moor, B.2
  • 12
    • 0036604602 scopus 로고    scopus 로고
    • Recursive 4SID algorithms using gradient type subspace tracking
    • Oku H., and Kimura H. Recursive 4SID algorithms using gradient type subspace tracking. Automatica 38 (2002) 1035-1043
    • (2002) Automatica , vol.38 , pp. 1035-1043
    • Oku, H.1    Kimura, H.2
  • 13
    • 4444348713 scopus 로고    scopus 로고
    • Closed-loop subspace identification; an orthogonal projection approach
    • Huang B., Ding S.X., and Joe Qin S. Closed-loop subspace identification; an orthogonal projection approach. J. Process Control 15 (2005) 53-66
    • (2005) J. Process Control , vol.15 , pp. 53-66
    • Huang, B.1    Ding, S.X.2    Joe Qin, S.3
  • 14
    • 0036778659 scopus 로고    scopus 로고
    • A new subspace identification approach based on principal component analysis
    • Wang J., and Joe Qin S. A new subspace identification approach based on principal component analysis. J. Process Control 12 (2002) 841-855
    • (2002) J. Process Control , vol.12 , pp. 841-855
    • Wang, J.1    Joe Qin, S.2
  • 15
    • 0037262559 scopus 로고    scopus 로고
    • Model identification and damage detection using the data-driven stochastic subspace and ARMAV methods [J]
    • Bodeux J.B., and Golinval J.C. Model identification and damage detection using the data-driven stochastic subspace and ARMAV methods [J]. Mech. Syst. Signal Process. 17 1 (2003) 83-89
    • (2003) Mech. Syst. Signal Process. , vol.17 , Issue.1 , pp. 83-89
    • Bodeux, J.B.1    Golinval, J.C.2
  • 16
    • 0037411787 scopus 로고    scopus 로고
    • Subspace identification of continuous time models for process fault detection and isolation [J]
    • Li W., and Raghavan H. Subspace identification of continuous time models for process fault detection and isolation [J]. J. Process Control 13 (2003) 407-421
    • (2003) J. Process Control , vol.13 , pp. 407-421
    • Li, W.1    Raghavan, H.2
  • 17
    • 0033324721 scopus 로고    scopus 로고
    • C.T. Chou, M. Verhaegen, Identification of Wiener models with process noise, in: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, 1999.
  • 18
    • 0029757872 scopus 로고    scopus 로고
    • Identifying MIMO Hammerstein systems in the context of subspace model identification methods
    • Verhaegen M., and Westwick D. Identifying MIMO Hammerstein systems in the context of subspace model identification methods. Int. J. Control 63 2 (1996) 331-349
    • (1996) Int. J. Control , vol.63 , Issue.2 , pp. 331-349
    • Verhaegen, M.1    Westwick, D.2
  • 19
    • 0032685751 scopus 로고    scopus 로고
    • Subspace identification of bilinear systems subject to white inputs
    • Favoreel W., De Moor B., and Van Overschee P. Subspace identification of bilinear systems subject to white inputs. IEEE Trans. Autom. Control 44 6 (1999) 1157-1165
    • (1999) IEEE Trans. Autom. Control , vol.44 , Issue.6 , pp. 1157-1165
    • Favoreel, W.1    De Moor, B.2    Van Overschee, P.3
  • 20
    • 38349098086 scopus 로고    scopus 로고
    • H. Chen, J. M. Maciejowski. Subspace identification of combined deterministic-stochastic bilinear systems. in: IFAC Symposium on System Identification. Santa Barbara, California, 2000.
  • 21
    • 0035711060 scopus 로고    scopus 로고
    • Seth L. Lacy, Dennis S. Bernstein, Subspace identification for nonlinear system that are linear in unmeasured states. in: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001, pp. 3518-3523.
  • 22
    • 0033704780 scopus 로고    scopus 로고
    • V. Verdult, M. Verhaegen, J.M.A. Scherpen, Identification of nonlinear nonautonomous state space systems from input-output measurements, in: Proceedings of the IEEE International Conference on Industrial Technology, Goa, India, 2000, pp. 410-414.
  • 23
    • 0036568221 scopus 로고    scopus 로고
    • Subspace identification of multivariable linear parameter-varying systems
    • Verdult V., and Verhaegen M. Subspace identification of multivariable linear parameter-varying systems. Automatica 38 (2002) 805-814
    • (2002) Automatica , vol.38 , pp. 805-814
    • Verdult, V.1    Verhaegen, M.2
  • 24
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • Park J., and Sandberg J.W. Universal approximation using radial basis functions network. Neural Comput. 3 (1991) 246-257
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, J.W.2
  • 25
    • 0142063808 scopus 로고    scopus 로고
    • D.Y. Yeung, C.C. Chow, Parzen-Window network intrusion detectors, in: IEEE Proceedings of the 16th International Conference on Pattern Recognition, 2002, pp. 385-388.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.