-
1
-
-
34250900008
-
-
Carreira, E. M.; Fettes, A.; Marti, C. Org. React. 2006, 67, 1.
-
(2006)
Org. React
, vol.67
, pp. 1
-
-
Carreira, E.M.1
Fettes, A.2
Marti, C.3
-
2
-
-
0035886887
-
-
(a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 3726
-
-
Dalko, P.I.1
Moisan, L.2
-
3
-
-
6044269452
-
-
(b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 5138
-
-
Dalko, P.I.1
Moisan, L.2
-
5
-
-
55049138759
-
-
Dalko, P. I, Ed, Wiley-VCH: Weinheim
-
(d) Dalko, P. I., Ed. Enantioselective Organocatalysis; Wiley-VCH: Weinheim, 2007.
-
(2007)
Enantioselective Organocatalysis
-
-
-
6
-
-
0005909159
-
-
For kinetic studies on the aldol reaction of acetophenone with acetone and related examples, see:, and references therein
-
(d) For kinetic studies on the aldol reaction of acetophenone with acetone and related examples, see: Guthrie, J. P.; Wang, X.-P. Can. J. Chem. 1991, 69, 339 and references therein.
-
(1991)
Can. J. Chem
, vol.69
, pp. 339
-
-
Guthrie, J.P.1
Wang, X.-P.2
-
7
-
-
3042616453
-
-
Amino alcohols and vicinal diamines have been previously shown to catalyze aldol-type reactions. For examples of the aldol reaction of aldehydes with α-fluoro-acetone, catalyzed by prolinol, see: (a) Zhong, G.; Fan, J.; Barbas, C. F. Tetrahedron Lett. 2004, 45, 5681. For Robinson annulation, catalyzed by prolinol and its congeners (though lacking the information on enantioselectivity), see:
-
Amino alcohols and vicinal diamines have been previously shown to catalyze aldol-type reactions. For examples of the aldol reaction of aldehydes with α-fluoro-acetone, catalyzed by prolinol, see: (a) Zhong, G.; Fan, J.; Barbas, C. F. Tetrahedron Lett. 2004, 45, 5681. For Robinson annulation, catalyzed by prolinol and its congeners (though lacking the information on enantioselectivity), see:
-
-
-
-
8
-
-
0034596452
-
-
6951. For hydroxyamination of aldehydes, catalyzed by amino alcohols, see
-
(b) Bui, T.; Barbas, C. F. Tetrahedron Lett. 2000, 41, 6951. For hydroxyamination of aldehydes, catalyzed by amino alcohols, see:
-
(2000)
Tetrahedron Lett
, vol.41
-
-
Bui, T.1
Barbas, C.F.2
-
9
-
-
33646498743
-
-
6046. For aldol reaction of ArCHO with acetone and its derivatives, catalyzed by vicinal diamines, see
-
(c) Kano, T.; Ueda, M.; Takai, J.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 6046. For aldol reaction of ArCHO with acetone and its derivatives, catalyzed by vicinal diamines, see:
-
(2006)
J. Am. Chem. Soc
, vol.128
-
-
Kano, T.1
Ueda, M.2
Takai, J.3
Maruoka, K.4
-
10
-
-
33947389167
-
-
3074. For an overview of diamine catalysts, see
-
(d) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc 2007, 129, 3074. For an overview of diamine catalysts, see:
-
(2007)
J. Am. Chem. Soc
, vol.129
-
-
Luo, S.1
Xu, H.2
Li, J.3
Zhang, L.4
Cheng, J.-P.5
-
11
-
-
4143114533
-
-
Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580. The amino alcohols typically featured a secondary amine moiety, whereas the diamines typically contained a combination of one secondary and one tertiary amino group or one primary and one tertiary. For the use of amino acids with a primary amino group as catalysts for aldol reaction, see for example:
-
(e) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580. The amino alcohols typically featured a secondary amine moiety, whereas the diamines typically contained a combination of one secondary and one tertiary amino group or one primary and one tertiary. For the use of amino acids with a primary amino group as catalysts for aldol reaction, see for example:
-
-
-
-
12
-
-
84981886574
-
-
(f) Eder, U.; Sauer. G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 496.
-
(1971)
Angew. Chem., Int. Ed. Engl
, vol.10
, pp. 496
-
-
Eder, U.1
Sauer, G.2
Wiechert, R.3
-
13
-
-
0345735491
-
-
(g) Tanaka, F.; Thayumanava, R.; Mase, N.; Barbas, C. F. Tetrahedron Lett. 2004, 45, 325.
-
(2004)
Tetrahedron Lett
, vol.45
, pp. 325
-
-
Tanaka, F.1
Thayumanava, R.2
Mase, N.3
Barbas, C.F.4
-
14
-
-
33745893522
-
-
and references therein
-
(h) Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem. Eur. J. 2006, 12, 5383 and references therein.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 5383
-
-
Córdova, A.1
Zou, W.2
Dziedzic, P.3
Ibrahem, I.4
Reyes, E.5
Xu, Y.6
-
15
-
-
33846198424
-
-
288. For a general overview, see
-
(i) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2007, 129, 288. For a general overview, see:
-
(2007)
J. Am. Chem. Soc
, vol.129
-
-
Ramasastry, S.S.V.1
Zhang, H.2
Tanaka, F.3
Barbas, C.F.4
-
16
-
-
84891025254
-
Enamine Catalysis
-
Dalko, P. I, Ed, Wiley-VCH: Weinheim
-
(j) Tanaka, F.; Barbas, C. F. Enamine Catalysis, In Enantioselective Organocatalysis; P, I. Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007; p 19.
-
(2007)
Enantioselective Organocatalysis; P, I
, pp. 19
-
-
Tanaka, F.1
Barbas, C.F.2
-
17
-
-
7444257444
-
-
(a) Cheong, P. H.-Y.; Houk, K. N. J. Am, Chem. Soc. 2004, 126, 13912.
-
(2004)
J. Am, Chem. Soc
, vol.126
, pp. 13912
-
-
Cheong, P.H.-Y.1
Houk, K.N.2
-
18
-
-
4143104623
-
-
(b) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558.
-
(2004)
Acc. Chem. Res
, vol.37
, pp. 558
-
-
Allemann, C.1
Gordillo, R.2
Clemente, F.R.3
Cheong, P.H.-Y.4
Houk, K.N.5
-
19
-
-
34250688787
-
-
(c) Seebach, D.; Beck, A. K.; Badine, D. M.; Linbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R.; Prikoszovich, W.; Linder, B. Helv. Chim. Acta 2007, 90, 425.
-
(2007)
Helv. Chim. Acta
, vol.90
, pp. 425
-
-
Seebach, D.1
Beck, A.K.2
Badine, D.M.3
Linbach, M.4
Eschenmoser, A.5
Treasurywala, A.M.6
Hobi, R.7
Prikoszovich, W.8
Linder, B.9
-
20
-
-
38349110394
-
-
3j
-
3j
-
-
-
-
21
-
-
24144493658
-
-
(a) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman, Q. B.; Tomasini, G J. Org. Chem. 2005, 70, 7418-7421.
-
(2005)
J. Org. Chem
, vol.70
, pp. 7418-7421
-
-
Luppi, G.1
Cozzi, P.G.2
Monari, M.3
Kaptein, B.4
Broxterman, Q.B.5
Tomasini, G.6
-
22
-
-
33751290436
-
-
(b) Luppi, G.; Monari, M.; Corrêa, R. J.; Violante, F. A.; Pinto, A. C.; Kaptein, B.; Broxterman, Q. B.;. Garden, S. J.; Tomasini, C. Tetrahedron 2006, 62, 12017.
-
(2006)
Tetrahedron
, vol.62
, pp. 12017
-
-
Luppi, G.1
Monari, M.2
Corrêa, R.J.3
Violante, F.A.4
Pinto, A.C.5
Kaptein, B.6
Broxterman, Q.B.7
Garden, S.J.8
Tomasini, C.9
-
23
-
-
33846467147
-
-
(c) Chen, G.; Wang, Y.; He, H.; Gao, S.; Yang, X.; Hao, X. Heterocycles 2006, 68, 2327.
-
(2006)
Heterocycles
, vol.68
, pp. 2327
-
-
Chen, G.1
Wang, Y.2
He, H.3
Gao, S.4
Yang, X.5
Hao, X.6
-
24
-
-
0000965731
-
-
3, see: (a) Braude, F.; Lindwall, H. G. J. Am. Chem. Soc. 1933, 55, 325.
-
3, see: (a) Braude, F.; Lindwall, H. G. J. Am. Chem. Soc. 1933, 55, 325.
-
-
-
-
25
-
-
0031550864
-
-
(b) Garden, S. J.; Torres, J. C.; Ferreira, A. A.; da Silva, R. B.; Pinto, A. C. Tetrahedron Lett. 1997, 38, 1501.
-
(1997)
Tetrahedron Lett
, vol.38
, pp. 1501
-
-
Garden, S.J.1
Torres, J.C.2
Ferreira, A.A.3
da Silva, R.B.4
Pinto, A.C.5
-
26
-
-
0037078267
-
-
(c) Garden, S. J.; da Silva, R. B.; Pinto, A. C. Tetrahedron 2002, 58, 8399.
-
(2002)
Tetrahedron
, vol.58
, pp. 8399
-
-
Garden, S.J.1
da Silva, R.B.2
Pinto, A.C.3
-
27
-
-
38349141450
-
-
2 produced only traces of (±)-2b in pure acetone.
-
2 produced only traces of (±)-2b in pure acetone.
-
-
-
-
28
-
-
38349107223
-
-
Partial racemization of the product was observed on column chromatography on silica gel; alumina proved to be a safer adsorbent. The enantiomeric enrichment on chromatography, reported by Tomasini,6a could not be confirmed
-
6a could not be confirmed.
-
-
-
-
29
-
-
0028950654
-
-
(a) Kamano, Y.; Zhang, H.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Pettit, G. R. Tetrahedron Lett. 1995, 36, 2783.
-
(1995)
Tetrahedron Lett
, vol.36
, pp. 2783
-
-
Kamano, Y.1
Zhang, H.2
Ichihara, Y.3
Kizu, H.4
Komiyama, K.5
Pettit, G.R.6
-
30
-
-
0028904861
-
-
(b) Zhang, H.; Kamano, Y.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Itokawa, H.; Pettit, G. R. Tetrahedron 1995, 51, 5523.
-
(1995)
Tetrahedron
, vol.51
, pp. 5523
-
-
Zhang, H.1
Kamano, Y.2
Ichihara, Y.3
Kizu, H.4
Komiyama, K.5
Itokawa, H.6
Pettit, G.R.7
-
31
-
-
0033612110
-
-
(c) Takayama, H.; Shimizu, T.; Sada, H.; Harada, Y.; Kitajima, M.; Aimi, N. Tetrahedron 1999, 55, 6841.
-
(1999)
Tetrahedron
, vol.55
, pp. 6841
-
-
Takayama, H.1
Shimizu, T.2
Sada, H.3
Harada, Y.4
Kitajima, M.5
Aimi, N.6
-
32
-
-
0001189019
-
-
Kamano, Y.; Kotake, A.; Hashima, H.; Hayakawa, I.; Hiraide, H.; Zhang, H. P.; Kizu, H.; Kizu, Komiyama, K.; Hayashi, M.; Pettit, G. R. Collect. Czech. Chem. Commun. 1999, 64, 1147.
-
(d) Kamano, Y.; Kotake, A.; Hashima, H.; Hayakawa, I.; Hiraide, H.; Zhang, H. P.; Kizu, H.; Kizu, Komiyama, K.; Hayashi, M.; Pettit, G. R. Collect. Czech. Chem. Commun. 1999, 64, 1147.
-
-
-
-
33
-
-
0035905365
-
-
(a) Nicolaou, K. C.; Huang, X.; Giuseppone, N.; Rao, P. B.; Bella, M.; Reddy, M. V.; Snyder, S. A. Angew. Chem., Int. Ed. 2001, 40, 4705.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 4705
-
-
Nicolaou, K.C.1
Huang, X.2
Giuseppone, N.3
Rao, P.B.4
Bella, M.5
Reddy, M.V.6
Snyder, S.A.7
-
34
-
-
0037119717
-
-
(b) Nicolaou, K. C.; Bella, M.; Che, D. Y.-K.; Huang, X.; Ling, T.; Snyder, S. A. Angew. Chem., Int. Ed. 2002, 41, 3495.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 3495
-
-
Nicolaou, K.C.1
Bella, M.2
Che, D.Y.-K.3
Huang, X.4
Ling, T.5
Snyder, S.A.6
-
35
-
-
4043128789
-
-
(c) Nicolaou, K. C.; Snyder, S. A.; Giuseppone, N.; Huang, X. H.; Bella, B.; Reddy, M. V.; Rao, P. B.; Koumbis, A. E.; Giannakakou, P.; O'Brate, A. J. Am. Chem. Soc. 2004, 126, 10174.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 10174
-
-
Nicolaou, K.C.1
Snyder, S.A.2
Giuseppone, N.3
Huang, X.H.4
Bella, B.5
Reddy, M.V.6
Rao, P.B.7
Koumbis, A.E.8
Giannakakou, P.9
O'Brate, A.10
-
36
-
-
5644298630
-
-
(d) Nicolaou, K. C.; Chen, D. Y.-K.; Huang, X. H.; Ling, T. T.; Bella, M.; Snyder, S. A. J. Am. Chem. Soc. 2004, 126, 12888.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 12888
-
-
Nicolaou, K.C.1
Chen, D.Y.-K.2
Huang, X.H.3
Ling, T.T.4
Bella, M.5
Snyder, S.A.6
-
37
-
-
33846842437
-
-
(a) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129, 1020.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 1020
-
-
Franz, A.K.1
Dreyfuss, P.D.2
Schreiber, S.L.3
-
38
-
-
38349115567
-
-
(b) Schulz, V.; Davoust, M.; Lemarié, M.; Lohier, J.-F.; Sopkova de Oliveira Santos, J.; Metzner, P.; Brière, J.-F. Org. Lett. 2007, 9, 174.
-
(2007)
Org. Lett
, vol.9
, pp. 174
-
-
Schulz, V.1
Davoust, M.2
Lemarié, M.3
Lohier, J.-F.4
Sopkova de Oliveira Santos, J.5
Metzner, P.6
Brière, J.-F.7
-
40
-
-
38349135289
-
-
2COEt (88% ee).
-
2COEt (88% ee).
-
-
-
-
41
-
-
38349089494
-
-
Our synthetic, enantiopure (R, )-2c showed [α]D +48.9 (c 0.33, MeOH, whereas the natural product, isolated from Amathia convoluta, had [α]D +27.4 (c 0.06, MeOH),10a suggesting a partial racemization during the isolation process or that the natural product might not be enantiopure
-
10a suggesting a partial racemization during the isolation process or that the natural product might not be enantiopure.
-
-
-
-
42
-
-
38349113375
-
-
2-hexane- methanol mixture provided enantiopure (R)-(+)-2c.
-
2-hexane- methanol mixture provided enantiopure (R)-(+)-2c.
-
-
-
-
43
-
-
38349165489
-
-
9 can be attributed to dehydration-rehydration rather then the retroaldol-aldol sequence.
-
9 can be attributed to dehydration-rehydration rather then the retroaldol-aldol sequence.
-
-
-
-
44
-
-
38349169157
-
-
A slow conversion of lb into (±)-2b was observed with quinine as catalyst in pure acetone; the reaction was completed in 4 days.
-
A slow conversion of lb into (±)-2b was observed with quinine as catalyst in pure acetone; the reaction was completed in 4 days.
-
-
-
-
45
-
-
38349087110
-
-
2.
-
2.
-
-
-
-
46
-
-
38349109786
-
-
Note that the related oxazolidinone species, generated from proline and cyclohexanone and regarded as parasitic, has recently been suggested to be an active participant of the catalytic cycle.4c
-
4c
-
-
-
-
47
-
-
38349186502
-
-
The overall ee of the product (80% ee after 2 h) in this instance was a mathematical combination of the enantiopurity of the added (S)-(-)- 2b (20 mol% of 99% ee) and that normally produced on catalysis with leucinol (35% conversion, 70% ee).
-
The overall ee of the product (80% ee after 2 h) in this instance was a mathematical combination of the enantiopurity of the added (S)-(-)- 2b (20 mol% of 99% ee) and that normally produced on catalysis with leucinol (35% conversion, 70% ee).
-
-
-
-
48
-
-
4544276855
-
-
For a discussion of another case of gradual amplification operating via a different mechanism, see:, Int. Ed, and references therein
-
For a discussion of another case of gradual amplification (operating via a different mechanism), see: Mathew, S. P.; Iwamura, H.; Blackmond, D. G. Angew. Chem., Int. Ed. 2004, 43, 3317 and references therein.
-
(2004)
Angew. Chem
, vol.43
, pp. 3317
-
-
Mathew, S.P.1
Iwamura, H.2
Blackmond, D.G.3
-
49
-
-
28944449583
-
-
Pihko has observed an interesting increase in enantioselectivity in the proline-catalyzed aldehyde-ketone aldol reactions when triethylamine was added to the reaction mixture Pihko, P. M, Laurikainen, K. M, Usano, A, Nyberg, A. I, Jatta, A, Kaavi, J. A. Tetrahedron 2006, 62, 317, however, this effect does not appear to be related to our reactions
-
Pihko has observed an interesting increase in enantioselectivity in the proline-catalyzed aldehyde-ketone aldol reactions when triethylamine was added to the reaction mixture (Pihko, P. M.; Laurikainen, K. M.; Usano, A.; Nyberg, A. I.; Jatta, A.; Kaavi, J. A. Tetrahedron 2006, 62, 317); however, this effect does not appear to be related to our reactions.
-
-
-
-
50
-
-
38349172259
-
-
3a However, leucinol, being a primary amine, offers further stabilization of the transition state by an additional hydrogen bonding between the NH and OH, not available in the case of prolinol.
-
3a However, leucinol, being a primary amine, offers further stabilization of the transition state by an additional hydrogen bonding between the NH and OH, not available in the case of prolinol.
-
-
-
-
51
-
-
33644965942
-
-
The reaction of the syn-enamine 4b (featuring in 6) appears to be the lowest-energy pathway. For a discussion of this effect, see ref 6b and Cheong, P. H. Y, Zhang, H. L, Thayumanavan, R, Tanaka, F, Houk, K. N, Barbas, G F. Org. Lett. 2006, 8, 811
-
The reaction of the syn-enamine 4b (featuring in 6) appears to be the lowest-energy pathway. For a discussion of this effect, see ref 6b and Cheong, P. H. Y.; Zhang, H. L.; Thayumanavan, R.; Tanaka, F.; Houk, K. N.; Barbas, G F. Org. Lett. 2006, 8, 811.
-
-
-
-
52
-
-
38349169983
-
-
3 (X = F, Cl, MeO; Y = F, Cl) reacted with acetone in the presence of L-valinol as catalyst to afford the corresponding aldol products with 64-82% ee; details will be revealed in a full paper.
-
3 (X = F, Cl, MeO; Y = F, Cl) reacted with acetone in the presence of L-valinol as catalyst to afford the corresponding aldol products with 64-82% ee; details will be revealed in a full paper.
-
-
-
-
53
-
-
0032729062
-
-
For the synthesis of racemic convolutamydine A, see ref 7c and the following: (a) Jnaneshwar, G. K, Deshpande, V. H. J. Chem. Res, Synop. 1999, 632
-
For the synthesis of racemic convolutamydine A, see ref 7c and the following: (a) Jnaneshwar, G. K.; Deshpande, V. H. J. Chem. Res., Synop. 1999, 632.
-
-
-
-
54
-
-
0032865116
-
-
Jnaneshwara, G. K.; Bedekar, A. V.; Deshpande, V. H. Synth. Commun. 1999, 29, 3627. For the synthesis of racemic convolutamydine C, see:
-
(b) Jnaneshwara, G. K.; Bedekar, A. V.; Deshpande, V. H. Synth. Commun. 1999, 29, 3627. For the synthesis of racemic convolutamydine C, see:
-
-
-
-
55
-
-
33748674685
-
-
2405. For the synthesis of both enantiomers of convolutamydine B and E using a stoichiometric chiral auxiliary, see
-
(c) Miah, S.; Moody, C. J.; Richards, I. C.; Slawin, A. M. Z. J. Chem. Soc., Perkin Trans. 1 1997, 2405. For the synthesis of both enantiomers of convolutamydine B and E using a stoichiometric chiral auxiliary, see:
-
(1997)
J. Chem. Soc., Perkin Trans. 1
-
-
Miah, S.1
Moody, C.J.2
Richards, I.C.3
Slawin, A.M.Z.4
-
56
-
-
33644772040
-
-
(d) Nakamura, T.; Shirokawa, S.; Hosokawa, S.; Nakazaki, A.; Kobayashi, S. Org. Lett. 2006, 5, 677.
-
(2006)
Org. Lett
, vol.5
, pp. 677
-
-
Nakamura, T.1
Shirokawa, S.2
Hosokawa, S.3
Nakazaki, A.4
Kobayashi, S.5
|