메뉴 건너뛰기




Volumn 73, Issue 4, 2008, Pages 447-469

A new neural network-based model for hysteretic behavior of materials

Author keywords

Cyclic material model; Hysteretic systems; Neural networks; Non linear finite element analysis

Indexed keywords

COMPUTER SIMULATION; CYCLIC LOADS; FINITE ELEMENT METHOD; MATERIALS TESTING; NEURAL NETWORKS;

EID: 38349175675     PISSN: 00295981     EISSN: 10970207     Source Type: Journal    
DOI: 10.1002/nme.2082     Document Type: Article
Times cited : (78)

References (34)
  • 2
    • 0000322420 scopus 로고
    • Experimental study of the subsequent yield surface by using cross-shaped specimens
    • Shiratori E, Ikegami K. Experimental study of the subsequent yield surface by using cross-shaped specimens. Journal of the Mechanics and Physics of Solids 1968; 16:373-394.
    • (1968) Journal of the Mechanics and Physics of Solids , vol.16 , pp. 373-394
    • Shiratori, E.1    Ikegami, K.2
  • 5
    • 0033075359 scopus 로고    scopus 로고
    • Thermodynamic formulation of plastic work hardening materials
    • Ristinmaa M. Thermodynamic formulation of plastic work hardening materials. Journal of Engineering Mechanics (ASCE) 1999; 125:152-155.
    • (1999) Journal of Engineering Mechanics (ASCE) , vol.125 , pp. 152-155
    • Ristinmaa, M.1
  • 6
    • 85024570641 scopus 로고
    • A distributed-element model for hysteresis and its steady-state dynamic response
    • Iwan WD. A distributed-element model for hysteresis and its steady-state dynamic response. Journal of Applied Mechanics 1966; 33:893-900.
    • (1966) Journal of Applied Mechanics , vol.33 , pp. 893-900
    • Iwan, W.D.1
  • 7
    • 0016939287 scopus 로고
    • Method for random vibration of hysteretic systems
    • Wen YK. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics (ASCE) 1976; 102:249-263.
    • (1976) Journal of Engineering Mechanics (ASCE) , vol.102 , pp. 249-263
    • Wen, Y.K.1
  • 13
    • 84943274699 scopus 로고
    • A direct adaptive method for faster back propagation learning: The RPROP algorithm
    • Piscataway, NJ, U.S.A
    • Riedmiller M, Braun H. A direct adaptive method for faster back propagation learning: the RPROP algorithm. IEEE International Conference on Neural Networks, Piscataway, NJ, U.S.A., 1993; 586-591.
    • (1993) IEEE International Conference on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 16
    • 0031917757 scopus 로고    scopus 로고
    • A new nested adaptive neural network for modeling of constitutive behavior of materials
    • Ghaboussi J, Sidarta D. A new nested adaptive neural network for modeling of constitutive behavior of materials. International Journal of Computer and Geotechnics 1998; 22:29-51.
    • (1998) International Journal of Computer and Geotechnics , vol.22 , pp. 29-51
    • Ghaboussi, J.1    Sidarta, D.2
  • 17
    • 1442356115 scopus 로고    scopus 로고
    • Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
    • Zhang MM. Neural network material models determined from structural tests. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 1996.
    • (1996) Neural network material models determined from structural tests
    • Zhang, M.M.1
  • 18
    • 0031917757 scopus 로고    scopus 로고
    • A new nested adaptive neural network for modeling of constitutive behavior of materials
    • Ghaboussi J, Sidarta D. A new nested adaptive neural network for modeling of constitutive behavior of materials. International Journal of Computer and Geotechnics 1998; 22:29-51.
    • (1998) International Journal of Computer and Geotechnics , vol.22 , pp. 29-51
    • Ghaboussi, J.1    Sidarta, D.2
  • 19
    • 0041624274 scopus 로고    scopus 로고
    • Artificial neural network as in incremental non-linear constitutive model for a finite element code
    • Lefik M, Schrefler BA. Artificial neural network as in incremental non-linear constitutive model for a finite element code. Computer Methods in Applied Mechanics and Engineering 2003; 192:3265-3283.
    • (2003) Computer Methods in Applied Mechanics and Engineering , vol.192 , pp. 3265-3283
    • Lefik, M.1    Schrefler, B.A.2
  • 20
    • 1142276053 scopus 로고    scopus 로고
    • Accurate cyclic plastic analysis using a neural network material model
    • Furukawa T, Hoffman M. Accurate cyclic plastic analysis using a neural network material model. Engineering Analysis with Boundary Elements 2004; 28:195-204.
    • (2004) Engineering Analysis with Boundary Elements , vol.28 , pp. 195-204
    • Furukawa, T.1    Hoffman, M.2
  • 22
    • 19744364029 scopus 로고    scopus 로고
    • An inner product-based dynamic neural network hysteresis model for piezoceramic actuator
    • Xuanju D, Yonghong T. An inner product-based dynamic neural network hysteresis model for piezoceramic actuator. Sensors and Actuators 2005; 121:535-542.
    • (2005) Sensors and Actuators , vol.121 , pp. 535-542
    • Xuanju, D.1    Yonghong, T.2
  • 23
    • 33747897686 scopus 로고    scopus 로고
    • A neural network model of parametric nonlinear hysteretic inductors
    • Cincotti S, Marchesi A, Serri A. A neural network model of parametric nonlinear hysteretic inductors. IEEE Transactions on Magnetics 1998; 34:3040-3043.
    • (1998) IEEE Transactions on Magnetics , vol.34 , pp. 3040-3043
    • Cincotti, S.1    Marchesi, A.2    Serri, A.3
  • 25
    • 17144407267 scopus 로고    scopus 로고
    • Modeling hysteresis using hybrid method of continuous transformation and neural networks
    • Tong Z, Tan Y, Zeng X. Modeling hysteresis using hybrid method of continuous transformation and neural networks. Sensors and Actuators 2005; 119:254-262.
    • (2005) Sensors and Actuators , vol.119 , pp. 254-262
    • Tong, Z.1    Tan, Y.2    Zeng, X.3
  • 26
    • 0008130439 scopus 로고
    • Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
    • Wu X. Neural network-based material modeling. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 1991.
    • (1991) Neural network-based material modeling
    • Wu, X.1
  • 29
    • 0141723356 scopus 로고    scopus 로고
    • Compression field modeling of reinforced concrete subjected to reversed loading: Formulation
    • Palermo D, Vecchio FJ. Compression field modeling of reinforced concrete subjected to reversed loading: formulation. ACI Structural Journal 2003; 100:616-625.
    • (2003) ACI Structural Journal , vol.100 , pp. 616-625
    • Palermo, D.1    Vecchio, F.J.2
  • 30
    • 0000351584 scopus 로고
    • Stress-strain relations for concrete under cyclic loading
    • Sinha BP, Gerstle KH, Tulin LG. Stress-strain relations for concrete under cyclic loading. ACI Structural Journal 1964; 61:195-211.
    • (1964) ACI Structural Journal , vol.61 , pp. 195-211
    • Sinha, B.P.1    Gerstle, K.H.2    Tulin, L.G.3
  • 33
    • 38349084307 scopus 로고    scopus 로고
    • Gupta A, Krawinkler H. Seismic demands for performance evaluation of steel moment resisting frame structures. Report No. 132, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA, 1999.
    • Gupta A, Krawinkler H. Seismic demands for performance evaluation of steel moment resisting frame structures. Report No. 132, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA, 1999.
  • 34
    • 38349120664 scopus 로고    scopus 로고
    • ABAQUS/Standard HKS. A General Purpose Finite Element Code. Karlsson & Sorensen, Inc.: Hibbitt, 2004.
    • ABAQUS/Standard HKS. A General Purpose Finite Element Code. Karlsson & Sorensen, Inc.: Hibbitt, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.