-
2
-
-
0037250817
-
-
(a) Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O. K.; Ashurmetov, O. A. J. Nat. Prod. 2003, 66, 128-131.
-
(2003)
J. Nat. Prod
, vol.66
, pp. 128-131
-
-
Uchiyama, N.1
Kiuchi, F.2
Ito, M.3
Honda, G.4
Takeda, Y.5
Khodzhimatov, O.K.6
Ashurmetov, O.A.7
-
3
-
-
0028134104
-
-
For the isolation of coulterone from other plants, see
-
(b) For the isolation of coulterone from other plants, see: Frontana, B.; Cardenas, J.; Rodriguez-Hahn, L. Phytochemistry 1994, 36, 739-741.
-
(1994)
Phytochemistry
, vol.36
, pp. 739-741
-
-
Frontana, B.1
Cardenas, J.2
Rodriguez-Hahn, L.3
-
4
-
-
0346363697
-
-
Uchiyama, N.; Ito, M.; Kiuchi, F.; Honda, G.; Takeda, Y.; Khodzhimatov, O. K.; Ashurmetov, O. A. Tetrahedron Lett. 2004, 45, 531-533.
-
(2004)
Tetrahedron Lett
, vol.45
, pp. 531-533
-
-
Uchiyama, N.1
Ito, M.2
Kiuchi, F.3
Honda, G.4
Takeda, Y.5
Khodzhimatov, O.K.6
Ashurmetov, O.A.7
-
5
-
-
38349110412
-
-
5 komaroviquinone is the most potent with a minimum lethal concentration (MLC) of 0.4 μM., which contrasts with a MLC of 23.0 μM for komarovispirone.
-
5 komaroviquinone is the most potent with a minimum lethal concentration (MLC) of 0.4 μM., which contrasts with a MLC of 23.0 μM for komarovispirone.
-
-
-
-
7
-
-
24044462912
-
-
For other strategies to prepare the icetexane skeleton of 1, see: a
-
For other strategies to prepare the icetexane skeleton of 1, see: (a) Padwa, A.; Boonsombat, J.; Rashatasakhon, P.; Willis, J. Org. Lett. 2005, 7, 3725-3727.
-
(2005)
Org. Lett
, vol.7
, pp. 3725-3727
-
-
Padwa, A.1
Boonsombat, J.2
Rashatasakhon, P.3
Willis, J.4
-
10
-
-
38349153179
-
-
The spectroscopic data obtained for all new compounds were fully consistent with the assigned structures. Reaction conditions have not been optimized
-
The spectroscopic data obtained for all new compounds were fully consistent with the assigned structures. Reaction conditions have not been optimized.
-
-
-
-
11
-
-
24944588765
-
-
For the first synthesis of (±)-komaroviquinone 1, see
-
(a) For the first synthesis of (±)-komaroviquinone (1), see: Sengupta, S.; Drew, M. G. B.; Mukhopadhyay, R.; Achari, B.; Banerjee, A. K. J. Org. Chem. 2005, 70, 7694-7700.
-
(2005)
J. Org. Chem
, vol.70
, pp. 7694-7700
-
-
Sengupta, S.1
Drew, M.G.B.2
Mukhopadhyay, R.3
Achari, B.4
Banerjee, A.K.5
-
12
-
-
38349148255
-
-
For our synthesis of (±)-komaroviquinone, see
-
(b) For our synthesis of (±)-komaroviquinone, see: Majetich, G.; Li, Y.; Zou, G. Heterocycles 2007, 75, 217-225.
-
(2007)
Heterocycles
, vol.75
, pp. 217-225
-
-
Majetich, G.1
Li, Y.2
Zou, G.3
-
13
-
-
38349165504
-
-
For a synthesis of, -komaroviquinone, see
-
For a synthesis of (+)-komaroviquinone, see: Majetich, G.; Yu, J.; Li, Y. Heterocycles 2007, 73, 227-235.
-
(2007)
Heterocycles
, vol.73
, pp. 227-235
-
-
Majetich, G.1
Yu, J.2
Li, Y.3
-
14
-
-
38349189659
-
-
f 3 = 0.55, hexanes/EtOAc = 4:1).
-
f 3 = 0.55, hexanes/EtOAc = 4:1).
-
-
-
-
16
-
-
38349179091
-
-
Scheme 2 depicts only the excitation of the C(11) carbonyl of 1 prior to the generation of diradical species iii. If the C(14) carbonyl, a vinylogous ester, is the dominant chromophore, its excitation also results in the intermediacy of iii, as shown below. Figure presented.
-
Scheme 2 depicts only the excitation of the C(11) carbonyl of 1 prior to the generation of diradical species iii. If the C(14) carbonyl, a vinylogous ester, is the dominant chromophore, its excitation also results in the intermediacy of iii, as shown below. Figure presented.
-
-
-
-
18
-
-
0040855625
-
-
(a) Zimmerman, H. E.; Lewis, R. G.; McCullough, J. J.; Padwa, A.; Staley, S.; Semmelhack, M. J. Am. Chem. Soc. 1966, 88, 159-161.
-
(1966)
J. Am. Chem. Soc
, vol.88
, pp. 159-161
-
-
Zimmerman, H.E.1
Lewis, R.G.2
McCullough, J.J.3
Padwa, A.4
Staley, S.5
Semmelhack, M.6
-
19
-
-
0039669363
-
-
(b) Chapman, O. L.; Sieja, J. B.; Welstead, W. J., Jr. J. Am. Chem. Soc. 1966, 88, 161-162.
-
(1966)
J. Am. Chem. Soc
, vol.88
, pp. 161-162
-
-
Chapman, O.L.1
Sieja, J.B.2
Welstead Jr., W.J.3
-
20
-
-
38349111014
-
-
Komarovispirone was isolated as a minor component from a side fraction of a silica gel column in which komaroviquinone was isolated as the major component. It has been suggested that komarovispirone may be produced via the proposed photochemical pathway while still in aerial parts of the semi-shrub Dracocephalum komarovi Lipsky prior to isolation. Since the photoisomerization of komaroviquinone to komarovispirone is rapid, if it occurred within the semi-shrub, then komaroviquinone should not have been isolated and komarovispirone would have been the major component isolated
-
Komarovispirone was isolated as a minor component from a side fraction of a silica gel column in which komaroviquinone was isolated as the major component. It has been suggested that komarovispirone may be produced via the proposed photochemical pathway while still in aerial parts of the semi-shrub Dracocephalum komarovi Lipsky prior to isolation. Since the photoisomerization of komaroviquinone to komarovispirone is rapid, if it occurred within the semi-shrub, then komaroviquinone should not have been isolated and komarovispirone would have been the major component isolated.
-
-
-
|