-
1
-
-
0001900752
-
Maximization of a linear function of variables subject to linear inequalities
-
T.C. Koopmans (Ed.) New York: John Wiley
-
Dantzig, G.B., 1951 Maximization of a linear function of variables subject to linear inequalities. In: T.C. Koopmans (Ed.) Activity Analysis of Production and Allocation (New York: John Wiley), pp. 339-347.
-
(1951)
Activity Analysis of Production and Allocation
, pp. 339-347
-
-
Dantzig, G.B.1
-
2
-
-
0001849163
-
How good is the simplex algorithm?
-
O. Shisha (Ed.) Boston: Academic Press
-
Klee, V. and Minty, G.J., 1972, How good is the simplex algorithm? In: O. Shisha (Ed.) Inequalities III, (Boston: Academic Press), pp. 159-175.
-
(1972)
Inequalities III
, pp. 159-175
-
-
Klee, V.1
Minty, G.J.2
-
3
-
-
0344271280
-
Pivot rules for linear programming - A survey
-
Terlaky, T. and Zhang, S. 1993, Pivot rules for linear programming - a survey. Annals of Operations Research, 46, 203-233.
-
(1993)
Annals of Operations Research
, vol.46
, pp. 203-233
-
-
Terlaky, T.1
Zhang, S.2
-
4
-
-
0000564361
-
A polynomial algorithm in linear programming
-
Khachiyan, L.G., 1979, A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20, 191-194.
-
(1979)
Soviet Mathematics Doklady
, vol.20
, pp. 191-194
-
-
Khachiyan, L.G.1
-
5
-
-
51249181779
-
A new polynomial-time algorithm for linear programming
-
Karmarkar, N.K., 1984, A new polynomial-time algorithm for linear programming. Combinatorica 4, 373-395.
-
(1984)
Combinatorica
, vol.4
, pp. 373-395
-
-
Karmarkar, N.K.1
-
9
-
-
21344441910
-
A lower bound on the number of iterations of long-step and polynomial interior-point linear programming algorithms
-
Todd, M. and Ye, Y., 1996, A lower bound on the number of iterations of long-step and polynomial interior-point linear programming algorithms. Annals of Operations Research, 62, 233-252.
-
(1996)
Annals of Operations Research
, vol.62
, pp. 233-252
-
-
Todd, M.1
Ye, Y.2
-
10
-
-
84925237110
-
How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds
-
McMaster University
-
Deza, A. Nematollahi, E. and Terlaky, T., 2004, How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds. AdvOL-Report 2004/20, McMaster University.
-
(2004)
AdvOL-Report
-
-
Deza, A.1
Nematollahi, E.2
Terlaky, T.3
-
13
-
-
0001292818
-
An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming
-
th IFIP-Conference, Budapest 1985 (New York: Springer)
-
th IFIP-Conference, Budapest 1985. Also Lecture Notes in Control and Information Sciences 84, 1986 (New York: Springer), pp. 866-876.
-
(1985)
Lecture Notes in Control and Information Sciences
, vol.84
, pp. 866-876
-
-
Sonnevend, G.1
|