-
1
-
-
0032612220
-
Linear modeling of mrna expression levels during ens development and injury
-
D'Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mrna expression levels during ens development and injury. Pac. Symp. Biocomput., 41-52 (1999)
-
(1999)
Pac. Symp. Biocomput
, vol.41-52
-
-
D'Haeseleer, P.1
Wen, X.2
Fuhrman, S.3
Somogyi, R.4
-
2
-
-
20844452570
-
A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae
-
Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y.F., Kao, CY.: A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics 21, 2883-2890 (2005)
-
(2005)
Bioinformatics
, vol.21
, pp. 2883-2890
-
-
Chen, K.C.1
Wang, T.Y.2
Tseng, H.H.3
Huang, C.Y.F.4
Kao, C.Y.5
-
3
-
-
1242333310
-
Qualitative simulation of genetic regulatory networks using piecewise-linear models
-
De Jong, H., Gouze, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301-340 (2004)
-
(2004)
Bull. Math. Biol
, vol.66
, pp. 301-340
-
-
De Jong, H.1
Gouze, J.L.2
Hernandez, C.3
Page, M.4
Sari, T.5
Geiselmann, J.6
-
4
-
-
0043130707
-
Inferring gene regulatory networks from time-ordered gene expression data of bacillussubtilis using differential equations
-
De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of bacillussubtilis using differential equations. Pac. Symp. Biocomput., 17-28 (2003)
-
(2003)
Pac. Symp. Biocomput
, vol.17-28
-
-
De Hoon, M.1
Imoto, S.2
Kobayashi, K.3
Ogasawara, N.4
Miyano, S.5
-
5
-
-
33644681560
-
Recovering genetic regulatory networks from micro-array data and location analysis data
-
Li, F., Yang, Y.: Recovering genetic regulatory networks from micro-array data and location analysis data. Genome Informatics 15, 131-140 (2004)
-
(2004)
Genome Informatics
, vol.15
, pp. 131-140
-
-
Li, F.1
Yang, Y.2
-
6
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput., 422-433 (2001)
-
(2001)
Pac. Symp. Biocomput
, vol.422-433
-
-
Hartemink, A.1
Gifford, D.2
Jaakkola, T.3
Young, R.4
-
7
-
-
12344259602
-
Advances to Bayesian network inference for generating casual networks from observational biological data
-
Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating casual networks from observational biological data. Bioinformatics 20, 3594-3603 (2004)
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.2
Wang, P.3
Hartemink, A.4
Jarvis, E.5
-
8
-
-
4644238174
-
Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm
-
Wang, S.: Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. J. Bioinform. Comput. Biol. 2, 441-458 (2004)
-
(2004)
J. Bioinform. Comput. Biol
, vol.2
, pp. 441-458
-
-
Wang, S.1
-
9
-
-
33745622668
-
An effective structure learning method for constructing gene networks
-
Chen, X., Anantha, G., Wang, X.: An effective structure learning method for constructing gene networks. Bioinformatics 22, 1367-1374 (2006)
-
(2006)
Bioinformatics
, vol.22
, pp. 1367-1374
-
-
Chen, X.1
Anantha, G.2
Wang, X.3
-
10
-
-
21844455527
-
Learning module networks
-
Segal, E., Pe'er, D., Regev, A., Koller, D., Friedman, N.: Learning module networks. J. Mach. Learn. Res. 6, 557-588 (2005)
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 557-588
-
-
Segal, E.1
Pe'er, D.2
Regev, A.3
Koller, D.4
Friedman, N.5
-
11
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Bernard, A., Hartemink, A.: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocomput., 459-470 (2005)
-
(2005)
Pac. Symp. Biocomput
, vol.459-470
-
-
Bernard, A.1
Hartemink, A.2
-
12
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zou, M., Conzen, S.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71-79 (2005)
-
(2005)
Bioinformatics
, vol.21
, pp. 71-79
-
-
Zou, M.1
Conzen, S.2
-
13
-
-
0033736476
-
Genetic network inference: From co-expression clustering to reverse engineering
-
D'Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707-726 (2000)
-
(2000)
Bioinformatics
, vol.16
, pp. 707-726
-
-
D'Haeseleer, P.1
Wen, X.2
Fuhrman, S.3
Somogyi, R.4
-
14
-
-
0032112293
-
A genome-wide transcriptional analysis of the mitotic cell cycle
-
Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65-73 (1998)
-
(1998)
Mol. Cell
, vol.2
, pp. 65-73
-
-
Cho, R.J.1
Campbell, M.J.2
Winzeler, E.A.3
Steinmetz, L.4
Conway, A.5
Wodicka, L.6
Wolfsberg, T.G.7
Gabrielian, A.E.8
Landsman, D.9
Lockhart, D.J.10
Davis, R.W.11
-
15
-
-
14344249889
-
Feature selection, L1 vs L2 regularization, and rotational invariance
-
Ng, A.: Feature selection, L1 vs L2 regularization, and rotational invariance. In: International Conf. on Mach. Learn (ICML) (2004)
-
(2004)
International Conf. on Mach. Learn (ICML)
-
-
Ng, A.1
-
16
-
-
1942418470
-
Grafting: Fast, incremental feature selection by gradient descent in function space
-
Simon, P., Kevin, L., James, T.: Grafting: Fast, incremental feature selection by gradient descent in function space. J. Mach. Learn. Res. 3, 1333-1356 (2003)
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1333-1356
-
-
Simon, P.1
Kevin, L.2
James, T.3
-
17
-
-
80053189931
-
Convex structure learning for Bayesian networks: Polynomial feature selection and approximate ordering
-
Intell UAI
-
Guo, Y., Schuurmans, D.: Convex structure learning for Bayesian networks: Polynomial feature selection and approximate ordering. In: Conf. on Uncertainty in Artif. Intell (UAI) (2006)
-
(2006)
Conf. on Uncertainty in Artif
-
-
Guo, Y.1
Schuurmans, D.2
-
20
-
-
0034564415
-
-
van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), 355-366 (2000)
-
van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), 355-366 (2000)
-
-
-
-
21
-
-
17944372930
-
Serial regulation of transcriptional regulators in the yeast cell cycle
-
Simon, I., Barnett, J., Hannett, N., Harbison, C., Rinaldi, N., Volkert, T., Wyrick, J.J., Zeitlinger, J., Gifford, D., Jaakkola, T., Young, R.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697-708 (2001)
-
(2001)
Cell
, vol.106
, pp. 697-708
-
-
Simon, I.1
Barnett, J.2
Hannett, N.3
Harbison, C.4
Rinaldi, N.5
Volkert, T.6
Wyrick, J.J.7
Zeitlinger, J.8
Gifford, D.9
Jaakkola, T.10
Young, R.11
-
22
-
-
0035945567
-
Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf
-
Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., Brown, P.O.: Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf. Nature 409, 533-538 (2001)
-
(2001)
Nature
, vol.409
, pp. 533-538
-
-
Iyer, V.R.1
Horak, C.E.2
Scafe, C.S.3
Botstein, D.4
Snyder, M.5
Brown, P.O.6
|