메뉴 건너뛰기




Volumn 4751 LNBI, Issue , 2007, Pages 83-95

Learning gene regulatory networks via globally regularized risk minimization

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; PATTERN RECOGNITION; PROBLEM SOLVING; RISK MANAGEMENT; SOFTWARE PROTOTYPING; TIME SERIES ANALYSIS;

EID: 38349104859     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74960-8_7     Document Type: Conference Paper
Times cited : (1)

References (22)
  • 1
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mrna expression levels during ens development and injury
    • D'Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mrna expression levels during ens development and injury. Pac. Symp. Biocomput., 41-52 (1999)
    • (1999) Pac. Symp. Biocomput , vol.41-52
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 2
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae
    • Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y.F., Kao, CY.: A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics 21, 2883-2890 (2005)
    • (2005) Bioinformatics , vol.21 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.F.4    Kao, C.Y.5
  • 3
    • 1242333310 scopus 로고    scopus 로고
    • Qualitative simulation of genetic regulatory networks using piecewise-linear models
    • De Jong, H., Gouze, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301-340 (2004)
    • (2004) Bull. Math. Biol , vol.66 , pp. 301-340
    • De Jong, H.1    Gouze, J.L.2    Hernandez, C.3    Page, M.4    Sari, T.5    Geiselmann, J.6
  • 4
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of bacillussubtilis using differential equations
    • De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of bacillussubtilis using differential equations. Pac. Symp. Biocomput., 17-28 (2003)
    • (2003) Pac. Symp. Biocomput , vol.17-28
    • De Hoon, M.1    Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 5
    • 33644681560 scopus 로고    scopus 로고
    • Recovering genetic regulatory networks from micro-array data and location analysis data
    • Li, F., Yang, Y.: Recovering genetic regulatory networks from micro-array data and location analysis data. Genome Informatics 15, 131-140 (2004)
    • (2004) Genome Informatics , vol.15 , pp. 131-140
    • Li, F.1    Yang, Y.2
  • 6
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput., 422-433 (2001)
    • (2001) Pac. Symp. Biocomput , vol.422-433
    • Hartemink, A.1    Gifford, D.2    Jaakkola, T.3    Young, R.4
  • 7
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating casual networks from observational biological data
    • Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating casual networks from observational biological data. Bioinformatics 20, 3594-3603 (2004)
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5
  • 8
    • 4644238174 scopus 로고    scopus 로고
    • Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm
    • Wang, S.: Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. J. Bioinform. Comput. Biol. 2, 441-458 (2004)
    • (2004) J. Bioinform. Comput. Biol , vol.2 , pp. 441-458
    • Wang, S.1
  • 9
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • Chen, X., Anantha, G., Wang, X.: An effective structure learning method for constructing gene networks. Bioinformatics 22, 1367-1374 (2006)
    • (2006) Bioinformatics , vol.22 , pp. 1367-1374
    • Chen, X.1    Anantha, G.2    Wang, X.3
  • 11
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernard, A., Hartemink, A.: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocomput., 459-470 (2005)
    • (2005) Pac. Symp. Biocomput , vol.459-470
    • Bernard, A.1    Hartemink, A.2
  • 12
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou, M., Conzen, S.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71-79 (2005)
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.2
  • 13
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707-726 (2000)
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 15
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, L1 vs L2 regularization, and rotational invariance
    • Ng, A.: Feature selection, L1 vs L2 regularization, and rotational invariance. In: International Conf. on Mach. Learn (ICML) (2004)
    • (2004) International Conf. on Mach. Learn (ICML)
    • Ng, A.1
  • 16
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • Simon, P., Kevin, L., James, T.: Grafting: Fast, incremental feature selection by gradient descent in function space. J. Mach. Learn. Res. 3, 1333-1356 (2003)
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1333-1356
    • Simon, P.1    Kevin, L.2    James, T.3
  • 17
    • 80053189931 scopus 로고    scopus 로고
    • Convex structure learning for Bayesian networks: Polynomial feature selection and approximate ordering
    • Intell UAI
    • Guo, Y., Schuurmans, D.: Convex structure learning for Bayesian networks: Polynomial feature selection and approximate ordering. In: Conf. on Uncertainty in Artif. Intell (UAI) (2006)
    • (2006) Conf. on Uncertainty in Artif
    • Guo, Y.1    Schuurmans, D.2
  • 20
    • 0034564415 scopus 로고    scopus 로고
    • van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), 355-366 (2000)
    • van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), 355-366 (2000)
  • 22
    • 0035945567 scopus 로고    scopus 로고
    • Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf
    • Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., Brown, P.O.: Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf. Nature 409, 533-538 (2001)
    • (2001) Nature , vol.409 , pp. 533-538
    • Iyer, V.R.1    Horak, C.E.2    Scafe, C.S.3    Botstein, D.4    Snyder, M.5    Brown, P.O.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.