-
1
-
-
0012323136
-
Second order nonautonomous systems with symmetric potential changing sign
-
Antonacci F., and Magrone P. Second order nonautonomous systems with symmetric potential changing sign. Rend. Mat., Seie VII 18 (1998) 367-379
-
(1998)
Rend. Mat., Seie VII
, vol.18
, pp. 367-379
-
-
Antonacci, F.1
Magrone, P.2
-
2
-
-
0036601278
-
A minimax inequality and its applications to ordinary differential equations
-
Bonanno G. A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appl. 270 (2002) 210-219
-
(2002)
J. Math. Anal. Appl.
, vol.270
, pp. 210-219
-
-
Bonanno, G.1
-
3
-
-
0038824011
-
Infinitely many periodic solutions for a second-order nonautonomous system
-
Faraci F., and Livrea R. Infinitely many periodic solutions for a second-order nonautonomous system. Nonlinear Anal. 54 (2003) 417-429
-
(2003)
Nonlinear Anal.
, vol.54
, pp. 417-429
-
-
Faraci, F.1
Livrea, R.2
-
4
-
-
0003915087
-
-
Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo
-
Mawhin J., and Willem M. Critical Point Theory and Hamiltonian Systems (1989), Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo
-
(1989)
Critical Point Theory and Hamiltonian Systems
-
-
Mawhin, J.1
Willem, M.2
-
5
-
-
1442307670
-
Existence of homoclinic solution for the second order Hamiltonian systems
-
Ou Z., and Tang C. Existence of homoclinic solution for the second order Hamiltonian systems. J. Math. Anal. Appl. 291 (2004) 203-213
-
(2004)
J. Math. Anal. Appl.
, vol.291
, pp. 203-213
-
-
Ou, Z.1
Tang, C.2
-
6
-
-
0034395861
-
On three critical points theorem
-
Ricceri B. On three critical points theorem. Arch. Math. (Basel) 75 (2000) 220-226
-
(2000)
Arch. Math. (Basel)
, vol.75
, pp. 220-226
-
-
Ricceri, B.1
-
7
-
-
0033890661
-
A general variational principle and some of its applications
-
Ricceri B. A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000) 401-410
-
(2000)
J. Comput. Appl. Math.
, vol.113
, pp. 401-410
-
-
Ricceri, B.1
-
8
-
-
0037113677
-
Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems
-
Tang C., and Wu X. Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J. Math. Anal. Appl. 275 (2002) 870-882
-
(2002)
J. Math. Anal. Appl.
, vol.275
, pp. 870-882
-
-
Tang, C.1
Wu, X.2
-
9
-
-
0001630970
-
Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential
-
Tang C. Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential. J. Math. Anal. Appl. 189 (1995) 671-675
-
(1995)
J. Math. Anal. Appl.
, vol.189
, pp. 671-675
-
-
Tang, C.1
-
10
-
-
0032061550
-
Existence and multiplicity of periodic solutions for nonautonomous second order systems
-
Tang C. Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal., TMA 32 3 (1998) 299-304
-
(1998)
Nonlinear Anal., TMA
, vol.32
, Issue.3
, pp. 299-304
-
-
Tang, C.1
-
11
-
-
0030243399
-
Periodic solutions of non-autonomous second order systems
-
Tang C. Periodic solutions of non-autonomous second order systems. J. Math. Anal. Appl. 202 (1996) 465-469
-
(1996)
J. Math. Anal. Appl.
, vol.202
, pp. 465-469
-
-
Tang, C.1
-
12
-
-
22444454902
-
Periodic solutions for non-autonomous second order systems with sublinear nonlinearity
-
Tang C. Periodic solutions for non-autonomous second order systems with sublinear nonlinearity. Proc. Amer. Math. Soc. 126 11 (1998) 3263-3270
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, Issue.11
, pp. 3263-3270
-
-
Tang, C.1
-
13
-
-
0012617907
-
Periodic solutions of a class of non-autonomous second order systems
-
Wu X., and Tang C. Periodic solutions of a class of non-autonomous second order systems. J. Math. Anal. Appl. 236 (1999) 227-235
-
(1999)
J. Math. Anal. Appl.
, vol.236
, pp. 227-235
-
-
Wu, X.1
Tang, C.2
-
14
-
-
4243101608
-
Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems
-
Wu X. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems. Nonlinear Anal., TMA 58 (2004) 899-907
-
(2004)
Nonlinear Anal., TMA
, vol.58
, pp. 899-907
-
-
Wu, X.1
-
15
-
-
0242610941
-
Infinitely many homoclinic orbits for the second-order Hamiltonian systems
-
Zou W., and Li S. Infinitely many homoclinic orbits for the second-order Hamiltonian systems. Appl. Math. Lett. 16 (2003) 1283-1287
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 1283-1287
-
-
Zou, W.1
Li, S.2
-
16
-
-
0037146386
-
Infinitely many solutions for Hamiltonian systems
-
Zou W., and Li S. Infinitely many solutions for Hamiltonian systems. J. Differential Equations 186 (2002) 141-164
-
(2002)
J. Differential Equations
, vol.186
, pp. 141-164
-
-
Zou, W.1
Li, S.2
-
17
-
-
38349185577
-
-
E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II/B, Berlin, Heidelberg, New York, 1985
-
-
-
|