메뉴 건너뛰기




Volumn 4830 LNAI, Issue , 2007, Pages 100-109

Avoiding local minima in feedforward neural networks by simultaneous learning

Author keywords

Feedforward neural networks; Local minima; Removal criteria; Simultaneous learning

Indexed keywords

COMPUTATIONAL METHODS; LEARNING SYSTEMS; OPTIMIZATION; PROBLEM SOLVING;

EID: 38349075328     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-76928-6_12     Document Type: Conference Paper
Times cited : (56)

References (21)
  • 4
    • 0033100606 scopus 로고    scopus 로고
    • A Method to Determine the Required Number of Neural-Network Training Repetitions
    • Iyer, M.S., Rhinehart, R.R.: A Method to Determine the Required Number of Neural-Network Training Repetitions. IEEE Transactions on Neural Networks 10, 427-432 (1999)
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 427-432
    • Iyer, M.S.1    Rhinehart, R.R.2
  • 7
    • 0026955101 scopus 로고
    • Can Backpropagation Error Surface Not Have Local Minima
    • Yu, X.H.: Can Backpropagation Error Surface Not Have Local Minima. IEEE Transactions on Neural Networks 3, 1019-1021 (1992)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 1019-1021
    • Yu, X.H.1
  • 9
    • 0029375531 scopus 로고
    • On the Local Minima Free Condition of Backpropagation Learning
    • Xiao-Hu, Y., Guo-An, C.: On the Local Minima Free Condition of Backpropagation Learning. IEEE Transactions on Neural Networks 6, 1300-1303 (1995)
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 1300-1303
    • Xiao-Hu, Y.1    Guo-An, C.2
  • 11
    • 0032099284 scopus 로고    scopus 로고
    • The Local Minima-Free Condition of Feedforward Neural Networks for Outer-Supervised Learning
    • De-Shuang, H.: The Local Minima-Free Condition of Feedforward Neural Networks for Outer-Supervised Learning. IEEE Transactions on Systems, Man and Cybernetics, part B 28, 477-480 (1998)
    • (1998) IEEE Transactions on Systems, Man and Cybernetics, part B , vol.28 , pp. 477-480
    • De-Shuang, H.1
  • 13
    • 84943257899 scopus 로고
    • Global Descent Replaces Gradient Descent to Avoid Local Minima Problem in Learning with Artificial Neural Networks
    • Cetin, B.C., Burdick, J.W., Barhen, J.: Global Descent Replaces Gradient Descent to Avoid Local Minima Problem in Learning with Artificial Neural Networks. IEEE International Conference on Neural Networks 2, 836-842 (1993)
    • (1993) IEEE International Conference on Neural Networks , vol.2 , pp. 836-842
    • Cetin, B.C.1    Burdick, J.W.2    Barhen, J.3
  • 16
    • 0026955395 scopus 로고
    • Avoiding False Local Minima by Proper Initialization of Connections
    • Wessels, L.F.A., Barnard, E.: Avoiding False Local Minima by Proper Initialization of Connections. IEEE Transactions on Neural Networks 3, 899-905 (1992)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 899-905
    • Wessels, L.F.A.1    Barnard, E.2
  • 17
    • 0031143030 scopus 로고    scopus 로고
    • A New Evolutionary System for Evolving Artificial Neural Networks
    • Yao, X., Liu, Y.: A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Transactions on Neural Networks 8, 694-713 (1997)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 18
    • 0033362601 scopus 로고    scopus 로고
    • Evolving Artificial Neural Networks
    • Yao, X.: Evolving Artificial Neural Networks. Proceedings of the IEEE 87, 1423-1447 (1999)
    • (1999) Proceedings of the IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 19
    • 0034316975 scopus 로고    scopus 로고
    • Comparative Evaluation of Genetic Algorithm and Backpropagation for Training Neural Networks
    • Sexton, R.S., Gupta, J.N.D.: Comparative Evaluation of Genetic Algorithm and Backpropagation for Training Neural Networks. Information Sciences 129, 45-59 (2000)
    • (2000) Information Sciences , vol.129 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.D.2
  • 20
    • 26844480248 scopus 로고    scopus 로고
    • An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems
    • Cantu-Paz, E., Kamath, C.: An Empirical Comparison of Combinations of Evolutionary Algorithms and Neural Networks for Classification Problems. IEEE Transactions on Systems, Man and Cybernetics, part B 35, 915-927 (2005)
    • (2005) IEEE Transactions on Systems, Man and Cybernetics, part B , vol.35 , pp. 915-927
    • Cantu-Paz, E.1    Kamath, C.2
  • 21
    • 38349030075 scopus 로고    scopus 로고
    • Prechelt, L.: Proben 1: A Set of Neural Network Benchmark Problems and Benchmarking Rules. Technical report 21/94, Univ. Karlsruhe, Karlsruhe, Germany (1994)
    • Prechelt, L.: Proben 1: A Set of Neural Network Benchmark Problems and Benchmarking Rules. Technical report 21/94, Univ. Karlsruhe, Karlsruhe, Germany (1994)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.