-
1
-
-
0035412044
-
Evaluation of Ranson, Glasgow, APACHE-II, and APACHE-O criteria to predict severity in acute biliary pancreatitis
-
Osvaldt AB, Viero P, Borges da Costa MS, et al. Evaluation of Ranson, Glasgow, APACHE-II, and APACHE-O criteria to predict severity in acute biliary pancreatitis. Int Surg. 2001;86:158-161.
-
(2001)
Int Surg
, vol.86
, pp. 158-161
-
-
Osvaldt, A.B.1
Viero, P.2
Borges da Costa, M.S.3
-
2
-
-
0034656892
-
Computed tomography severity index is a predictor of outcomes for severe pancreatitis
-
Simchuk EJ, Traverso LW, Nukui Y, et al. Computed tomography severity index is a predictor of outcomes for severe pancreatitis. Am J Surg. 2000;179:352-355.
-
(2000)
Am J Surg
, vol.179
, pp. 352-355
-
-
Simchuk, E.J.1
Traverso, L.W.2
Nukui, Y.3
-
3
-
-
0036275993
-
Severity scoring for prognostication in patients with severe acute pancreatitis: Comparative analysis of the Ranson score and the APACHE III score
-
Eachempati SR, Hydo LJ, Barie PS. Severity scoring for prognostication in patients with severe acute pancreatitis: comparative analysis of the Ranson score and the APACHE III score. Arch Surg. 2002;137:730-736.
-
(2002)
Arch Surg
, vol.137
, pp. 730-736
-
-
Eachempati, S.R.1
Hydo, L.J.2
Barie, P.S.3
-
4
-
-
0035871395
-
Comparison of artificial neural networks with other statistical approaches - results from medical data sets
-
Sargent DJ. Comparison of artificial neural networks with other statistical approaches - results from medical data sets. Cancer. 2001;91(8 suppl):1636-1642.
-
(2001)
Cancer
, vol.91
, Issue.8 SUPPL.
, pp. 1636-1642
-
-
Sargent, D.J.1
-
5
-
-
0027254390
-
A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992
-
Bradley EL 3rd. A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Arch Surg. 1993; 128:586-590.
-
(1993)
Arch Surg
, vol.128
, pp. 586-590
-
-
Bradley 3rd, E.L.1
-
6
-
-
33845502065
-
Identification of severe acute pancreatitis using an artificial neural network
-
Mofidi R, Duff MD, Madhavan KK, et al. Identification of severe acute pancreatitis using an artificial neural network. Surgery. 2007;141:59-66.
-
(2007)
Surgery
, vol.141
, pp. 59-66
-
-
Mofidi, R.1
Duff, M.D.2
Madhavan, K.K.3
-
7
-
-
0020083498
-
The meaning and the use of the area under a receiver operating characteristic (ROC) curve
-
Hanley JA, McNeil BJ. The meaning and the use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
8
-
-
0027990649
-
The Hong Kong criteria and severity prediction in acute pancreatitis
-
Heath DI, Imrie CW. The Hong Kong criteria and severity prediction in acute pancreatitis. Int J Pancreatol. 1994;15:179-185.
-
(1994)
Int J Pancreatol
, vol.15
, pp. 179-185
-
-
Heath, D.I.1
Imrie, C.W.2
-
9
-
-
0025243471
-
Prediction of outcome in acute pancreatitis: A comparative study of APACHE II, clinical assessment and multiple factor scoring systems
-
Wilson C, Heath DI, Imrie CW. Prediction of outcome in acute pancreatitis: a comparative study of APACHE II, clinical assessment and multiple factor scoring systems. Br J Surg. 1990;77:1260-1264.
-
(1990)
Br J Surg
, vol.77
, pp. 1260-1264
-
-
Wilson, C.1
Heath, D.I.2
Imrie, C.W.3
-
10
-
-
0033053497
-
Prognostic usefulness of scoring systems in critically ill patients with severe acute pancreatitis
-
Williams M, Simms HH. Prognostic usefulness of scoring systems in critically ill patients with severe acute pancreatitis. Crit Care Med. 1999;27:901-907.
-
(1999)
Crit Care Med
, vol.27
, pp. 901-907
-
-
Williams, M.1
Simms, H.H.2
-
11
-
-
0027425770
-
Evaluation of the clinical usefulness of APACHE II and SAPS systems in the initial prognostic classification of acute pancreatitis: A multicenter study
-
Dominguez-Munoz JE, Carballo F, Garcia MJ, et al. Evaluation of the clinical usefulness of APACHE II and SAPS systems in the initial prognostic classification of acute pancreatitis: a multicenter study. Pancreas. 1993;8:682-686.
-
(1993)
Pancreas
, vol.8
, pp. 682-686
-
-
Dominguez-Munoz, J.E.1
Carballo, F.2
Garcia, M.J.3
-
12
-
-
0036792979
-
Improved prediction of outcome in patients with severe acute pancreatitis by the APACHE II score at 48 hours after hospital admission compared with theAPACHE II score at admission. Acute Physiology and Chronic Health Evaluation
-
Khan AA, Parekh D, Cho Y, et al. Improved prediction of outcome in patients with severe acute pancreatitis by the APACHE II score at 48 hours after hospital admission compared with theAPACHE II score at admission. Acute Physiology and Chronic Health Evaluation. Arch Surg. 2002;137:1136-1140.
-
(2002)
Arch Surg
, vol.137
, pp. 1136-1140
-
-
Khan, A.A.1
Parekh, D.2
Cho, Y.3
-
13
-
-
0031691761
-
Use of an artificial neural network to predict length of stay in acute pancreatitis
-
Pofahl WE, Walczak SM, Rhone E, et al. Use of an artificial neural network to predict length of stay in acute pancreatitis. Am Surg. 1998;64:868-872.
-
(1998)
Am Surg
, vol.64
, pp. 868-872
-
-
Pofahl, W.E.1
Walczak, S.M.2
Rhone, E.3
-
14
-
-
0036129091
-
Outcome analysis of patients with acute pancreatitis by using an artificial neural network
-
Keogan MT, Lo JY, Freed KS, et al. Outcome analysis of patients with acute pancreatitis by using an artificial neural network. Acad Radiol. 2002;9:410-419.
-
(2002)
Acad Radiol
, vol.9
, pp. 410-419
-
-
Keogan, M.T.1
Lo, J.Y.2
Freed, K.S.3
-
15
-
-
0033803988
-
Severe acute pancreatitis: Prognostic factors in 270 consecutive patients
-
Halonen KI, Leppaniemi AK, Puolakkainen PA, et al. Severe acute pancreatitis: prognostic factors in 270 consecutive patients. Pancreas. 2000;21:266-271.
-
(2000)
Pancreas
, vol.21
, pp. 266-271
-
-
Halonen, K.I.1
Leppaniemi, A.K.2
Puolakkainen, P.A.3
-
16
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49:1225-1231.
-
(1996)
J Clin Epidemiol
, vol.49
, pp. 1225-1231
-
-
Tu, J.V.1
|