-
1
-
-
0141457561
-
Harnack inequalities for jump processes
-
4
-
Bass R.F., Levin D.A. (2002). Harnack inequalities for jump processes. Potential Anal. 17(4): 375-388
-
(2002)
Potential Anal.
, vol.17
, pp. 375-388
-
-
Bass, R.F.1
Levin, D.A.2
-
2
-
-
0010682521
-
Markov processes and potential theory
-
Academic, New York
-
Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. vol. 29, Pure and Applied Mathematics, Academic, New York (1968)
-
(1968)
Pure and Applied Mathematics
, vol.29
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
3
-
-
0000141096
-
Probabilistic proof of boundary Harnack principle for α-harmonic functions
-
2
-
Bogdan K., Byczkowski T. (1999). Probabilistic proof of boundary Harnack principle for α-harmonic functions. Potential Anal. 11(2): 135-156
-
(1999)
Potential Anal.
, vol.11
, pp. 135-156
-
-
Bogdan, K.1
Byczkowski, T.2
-
4
-
-
0142137750
-
Harnack inequality for stable processes on d-sets
-
2
-
Bogdan K., Stós A., Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Studia Math. 158(2): 163-198
-
(2003)
Studia Math.
, vol.158
, pp. 163-198
-
-
Bogdan, K.1
Stós, A.2
Sztonyk, P.3
-
5
-
-
4544362747
-
Absolute continuity of symmetric Markov processes
-
3A
-
Chen Z.-Q., Fitzsimmons P.J., Takeda M., Ying J., Zhang T.-S. (2004). Absolute continuity of symmetric Markov processes. Ann. Probab. 32(3A): 2067-2098
-
(2004)
Ann. Probab.
, vol.32
, pp. 2067-2098
-
-
Chen, Z.-Q.1
Fitzsimmons, P.J.2
Takeda, M.3
Ying, J.4
Zhang, T.-S.5
-
6
-
-
0141799912
-
Heat kernel estimates for stable-like processes on d-sets
-
1
-
Chen Z.-Q., Kumagai T. (2003). Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1): 27-62
-
(2003)
Stoch. Process. Appl.
, vol.108
, pp. 27-62
-
-
Chen, Z.-Q.1
Kumagai, T.2
-
7
-
-
0742317510
-
Drift transforms and Green function estimates for discontinuous processes
-
1
-
Chen Z.-Q., Song R. (2003). Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201(1): 262-281
-
(2003)
J. Funct. Anal.
, vol.201
, pp. 262-281
-
-
Chen, Z.-Q.1
Song, R.2
-
9
-
-
0041034140
-
On the relation between elliptic and parabolic Harnack inequalities
-
5
-
Hebisch W., Saloff-Coste L. (2001). On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51(5): 1437-1481
-
(2001)
Ann. Inst. Fourier (Grenoble)
, vol.51
, pp. 1437-1481
-
-
Hebisch, W.1
Saloff-Coste, L.2
-
10
-
-
0012896944
-
On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
-
Ikeda N., Watanabe S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2: 79-95
-
(1962)
J. Math. Kyoto Univ.
, vol.2
, pp. 79-95
-
-
Ikeda, N.1
Watanabe, S.2
-
11
-
-
34548204479
-
The estimates of the mean first exit time from a ball for the α-stable Ornstein-Uhlenbeck processes
-
to appear
-
Jakubowski, T.: The estimates of the mean first exit time from a ball for the α-stable Ornstein-Uhlenbeck processes. Stoch. Process. Appl. (to appear)
-
Stoch. Process. Appl.
-
-
Jakubowski, T.1
-
13
-
-
0039986371
-
Stable non-Gaussian random processes (Stochastic models with infinite variance)
-
Chapman & Hall, New York
-
Samorodnitsky, G., Taqqu, M.S.: Stable non-Gaussian random processes (Stochastic models with infinite variance). Stochastic Modeling. Chapman & Hall, New York (1994)
-
(1994)
Stochastic Modeling
-
-
Samorodnitsky, G.1
Taqqu, M.S.2
-
14
-
-
0742271343
-
Harnack inequality for some classes of Markov processes
-
1-2
-
Song R., Vondraček Z. (2004). Harnack inequality for some classes of Markov processes. Math. Z. 246(1-2): 177-202
-
(2004)
Math. Z.
, vol.246
, pp. 177-202
-
-
Song, R.1
Vondraček, Z.2
|