-
1
-
-
14244265403
-
Separation principles for input-output and integral-input-to-state stability
-
D. Angeli, B. Ingalls, E.D. Sontag, and Y. Wang. Separation principles for input-output and integral-input-to-state stability. SIAM J. Cont. & Opt., 43:256-276, 2004.
-
(2004)
SIAM J. Cont. & Opt
, vol.43
, pp. 256-276
-
-
Angeli, D.1
Ingalls, B.2
Sontag, E.D.3
Wang, Y.4
-
2
-
-
3142680933
-
Uniform global asymptotic stability of differential inclusions
-
D. Angeli, B. Ingalls, E.D. Sontag, and Y. Wang. Uniform global asymptotic stability of differential inclusions. J. Dynamical & Control Systems, 10:391-412, 2004.
-
(2004)
J. Dynamical & Control Systems
, vol.10
, pp. 391-412
-
-
Angeli, D.1
Ingalls, B.2
Sontag, E.D.3
Wang, Y.4
-
5
-
-
23944504793
-
Converse Lyapunov theorems and robust asymptotic stability for hybrid systems
-
C. Cai, A. R. Teel, and R. Goebel. Converse Lyapunov theorems and robust asymptotic stability for hybrid systems. In Proc. 24th ACC, pages 12-17, 2005.
-
(2005)
Proc. 24th ACC
, pp. 12-17
-
-
Cai, C.1
Teel, A.R.2
Goebel, R.3
-
7
-
-
0000706858
-
Classical solutions of differential equations with multivalued right-hand side
-
A. Filippov. Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control, 5(4):609-621, 1967.
-
(1967)
SIAM J. Control
, vol.5
, Issue.4
, pp. 609-621
-
-
Filippov, A.1
-
8
-
-
0034148320
-
Filippov's and Filippov-Wazewski's theorems on closed domains
-
H. Frankowska and F. Rampazzo. Filippov's and Filippov-Wazewski's theorems on closed domains. J. Diff. Equations, 161:449-478, 2000.
-
(2000)
J. Diff. Equations
, vol.161
, pp. 449-478
-
-
Frankowska, H.1
Rampazzo, F.2
-
9
-
-
85049442043
-
Hybrid systems: Generalized solutions and robust stability
-
Stuttgart, Germany
-
R. Goebel, J. Hespanha, A.R. Teel, C. Cai, and R. Sanfelice. Hybrid systems: generalized solutions and robust stability. In IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, 2004.
-
(2004)
IFAC Symposium on Nonlinear Control Systems
-
-
Goebel, R.1
Hespanha, J.2
Teel, A.R.3
Cai, C.4
Sanfelice, R.5
-
10
-
-
33144463923
-
Solution to hybrid inclusions via set and graphical convergence with stability theory applications
-
R. Goebel and A. R. Teel. Solution to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica, 42:573-587, 2006.
-
(2006)
Automatica
, vol.42
, pp. 573-587
-
-
Goebel, R.1
Teel, A.R.2
-
11
-
-
0037323168
-
An infinite-time relaxation theorem for differential inclusions
-
B. Ingalls, E.D. Sontag, and Y. Wang. An infinite-time relaxation theorem for differential inclusions. Proc. American Mathematical Society, 131(2):487-499, 2002.
-
(2002)
Proc. American Mathematical Society
, vol.131
, Issue.2
, pp. 487-499
-
-
Ingalls, B.1
Sontag, E.D.2
Wang, Y.3
-
12
-
-
0029775547
-
A smooth converse Lyapunov theorem for robust stability
-
Y. Lin, E.D. Sontag, and Y. Wang. A smooth converse Lyapunov theorem for robust stability. SIAM J. Cont. & Opt., 34:124-160, 1996.
-
(1996)
SIAM J. Cont. & Opt
, vol.34
, pp. 124-160
-
-
Lin, Y.1
Sontag, E.D.2
Wang, Y.3
-
13
-
-
0010006190
-
Trajectories and quasitrajectories of an orientor field
-
in English
-
A. Pliś. Trajectories and quasitrajectories of an orientor field (in English). Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 11:369-370, 1963.
-
(1963)
Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys
, vol.11
, pp. 369-370
-
-
Pliś, A.1
-
15
-
-
0029288045
-
On characterizations of the input-to-state stability property
-
E.D. Sontag and Y. Wang. On characterizations of the input-to-state stability property. Systems & Control Letters, 24:351-359, 1995.
-
(1995)
Systems & Control Letters
, vol.24
, pp. 351-359
-
-
Sontag, E.D.1
Wang, Y.2
-
16
-
-
0030244538
-
New characterizations of input to state stability
-
E.D. Sontag and Y. Wang. New characterizations of input to state stability. IEEE Trans. Auto. Cont., 41:1283-1294, 1996.
-
(1996)
IEEE Trans. Auto. Cont
, vol.41
, pp. 1283-1294
-
-
Sontag, E.D.1
Wang, Y.2
-
17
-
-
0034426073
-
A smooth Lyapunov function from a class KC estimate involving two positive simidefinite functions
-
A. R. Teel and L. Praly. A smooth Lyapunov function from a class KC estimate involving two positive simidefinite functions. ESAIM: Control, Optimisation and Calculus of Variations, 5:313-367, 2000.
-
(2000)
ESAIM: Control, Optimisation and Calculus of Variations
, vol.5
, pp. 313-367
-
-
Teel, A.R.1
Praly, L.2
|