메뉴 건너뛰기




Volumn 4493 LNCS, Issue PART 3, 2007, Pages 561-569

A new fault detection and diagnosis method for oil pipeline based on rough set and neural network

Author keywords

[No Author keywords available]

Indexed keywords

FAILURE ANALYSIS; FAULT DETECTION; LARGE SCALE SYSTEMS; NEURAL NETWORKS; PARAMETER ESTIMATION; ROUGH SET THEORY;

EID: 38049183063     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (11)
  • 2
    • 33745156525 scopus 로고    scopus 로고
    • Cooling-Load Prediction by the Combination of Rough Set Theory and an Artificial Neural-Network based on Data-Fusion Technique
    • Hou, Z.J., Lian, Z.W, Yao, Y., Yuan, X.J.: Cooling-Load Prediction by the Combination of Rough Set Theory and an Artificial Neural-Network based on Data-Fusion Technique. Applied Energy 83 (2006) 1033-1046
    • (2006) Applied Energy , vol.83 , pp. 1033-1046
    • Hou, Z.J.1    Lian, Z.W.2    Yao, Y.3    Yuan, X.J.4
  • 3
    • 27744565978 scopus 로고
    • Rough Sets
    • Pawlak: Rough Sets. Int. J. Comput Sci. 11 (1982) 341-356
    • (1982) Int. J. Comput Sci , vol.11 , pp. 341-356
    • Pawlak1
  • 4
    • 33845262398 scopus 로고    scopus 로고
    • Method of Data Discretization based on Rough Set Theory
    • Zhao, J., Wang, G. Y., Wu, Z.F., Tang, H., Li, H.: Method of Data Discretization based on Rough Set Theory. Mini-Microsytems 25 (2004) 60-64
    • (2004) Mini-Microsytems , vol.25 , pp. 60-64
    • Zhao, J.1    Wang, G.Y.2    Wu, Z.F.3    Tang, H.4    Li, H.5
  • 5
    • 2042476687 scopus 로고    scopus 로고
    • Mining Classification Rules using Rough Sets and Neural Networks
    • Li, R.P., Wang, Z.O.: Mining Classification Rules using Rough Sets and Neural Networks. European Journal of Operational Research 157 (2004) 439-448
    • (2004) European Journal of Operational Research , vol.157 , pp. 439-448
    • Li, R.P.1    Wang, Z.O.2
  • 6
    • 27744525994 scopus 로고    scopus 로고
    • Dynamic Projection Network for Supervised Pattern Classification
    • Li, C.J., Jansuwan, C.: Dynamic Projection Network for Supervised Pattern Classification. Int. J. Approximate Reasoning 40 (2005) 243-261
    • (2005) Int. J. Approximate Reasoning , vol.40 , pp. 243-261
    • Li, C.J.1    Jansuwan, C.2
  • 9
    • 0033330755 scopus 로고    scopus 로고
    • Neuro-Fuzzy Approach Versus Rough-Set Inspired Methodology for Intelligent Decision Support
    • Gorzalczany, M.B., Piasta, Z.: Neuro-Fuzzy Approach Versus Rough-Set Inspired Methodology for Intelligent Decision Support. Information Sciences 120 (1999) 45-68
    • (1999) Information Sciences , vol.120 , pp. 45-68
    • Gorzalczany, M.B.1    Piasta, Z.2
  • 10
    • 0032188566 scopus 로고    scopus 로고
    • Comparison of Neo-fuzzy and Rough Neural Networks
    • Lingras, P.: Comparison of Neo-fuzzy and Rough Neural Networks. Information Sciences 110(1998) 207-215
    • (1998) Information Sciences , vol.110 , pp. 207-215
    • Lingras, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.