메뉴 건너뛰기




Volumn 14, Issue 4, 2007, Pages 695-700

Equivalent structural equation models: A challenge and responsibility

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICAL METHODS;

EID: 38049146040     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705510701303798     Document Type: Article
Times cited : (15)

References (7)
  • 1
    • 0025391120 scopus 로고
    • Applications of covariance structure modeling in psychology: Cause for concern?
    • Breckler, S. (1990). Applications of covariance structure modeling in psychology: Cause for concern? Psychological Bulletin, 107, 260-273.
    • (1990) Psychological Bulletin , vol.107 , pp. 260-273
    • Breckler, S.1
  • 2
    • 0003893658 scopus 로고
    • Cambridge, MA: MIT Press
    • Earman, J. (1992). Bayes or bust? Cambridge, MA: MIT Press.
    • (1992) Bayes or bust
    • Earman, J.1
  • 4
    • 33746412678 scopus 로고    scopus 로고
    • Statistical equivalence, semantic equivalence, eliminative induction and the Raykov-Marcoulides proof of infinite equivalence
    • Markus, K. A. (2002). Statistical equivalence, semantic equivalence, eliminative induction and the Raykov-Marcoulides proof of infinite equivalence. Structural Equation Modeling, 9, 503-522.
    • (2002) Structural Equation Modeling , vol.9 , pp. 503-522
    • Markus, K.A.1
  • 5
    • 0031505348 scopus 로고    scopus 로고
    • Equivalent structural equation models and group equality constraints
    • Raykov, T. (1997). Equivalent structural equation models and group equality constraints. Multivariate Behavioral Research, 32, 95-104.
    • (1997) Multivariate Behavioral Research , vol.32 , pp. 95-104
    • Raykov, T.1
  • 6
    • 0008497733 scopus 로고    scopus 로고
    • Can there be infinitely many models equivalent to a given covariance structure model?
    • Raykov, T., & Marcoulides, G. A. (2001). Can there be infinitely many models equivalent to a given covariance structure model? Structural Equation Modeling, 8, 142-149.
    • (2001) Structural Equation Modeling , vol.8 , pp. 142-149
    • Raykov, T.1    Marcoulides, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.