-
1
-
-
0032812296
-
Global dynamics of a SEIR model with varying total population size[J]
-
2
-
Michael Y Li, Gaef John R, Wang Liancheng, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191-213.
-
(1999)
Mathematical Biosciences
, vol.160
, pp. 191-213
-
-
Li, M.Y.1
Gaef John, R.2
Wang, L.3
-
2
-
-
0036222772
-
Global dynamics of an SEIR epidemic model with vertical transmission[J]
-
1
-
Michael Y Li, Hall Smith, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission[J]. SIAM Journal on Applied Mathematics, 2001, 62(1):58-69.
-
(2001)
SIAM Journal on Applied Mathematics
, vol.62
, pp. 58-69
-
-
Li, M.Y.1
Smith, H.2
Wang, L.3
-
4
-
-
0030976773
-
Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J]
-
5
-
Greenhalgh D. Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J]. Mathematical and Computer Modelling, 1997, 25(5):85-107.
-
(1997)
Mathematical and Computer Modelling
, vol.25
, pp. 85-107
-
-
Greenhalgh, D.1
-
5
-
-
18444376767
-
Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period[J]
-
5
-
Li Guihua, Jin Zhen. Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period[J]. Chaos, Solitons and Fractals, 2005, 25(5):1177-1184.
-
(2005)
Chaos, Solitons and Fractals
, vol.25
, pp. 1177-1184
-
-
Li, G.1
Jin, Zhen.2
-
6
-
-
0002449311
-
Periodicity and stability in epidemic models: A survey[M]
-
Academic Press New York
-
Hethcote H W, Stech H W, van den Driessche P. Periodicity and stability in epidemic models: a survey[M]. In: Differential Equations and Applications in Ecology, Epidemics, and Population Problems, New York: Academic Press, 1981, 65-85.
-
(1981)
Differential Equations and Applications in Ecology, Epidemics, and Population Problems
, pp. 65-85
-
-
Hethcote, H.W.1
Stech, H.W.2
Van Den Driessche, P.3
-
7
-
-
0036291194
-
Stability properties of pulse vaccination strategy in SEIR epidemic model[J]
-
1
-
d'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002, 179(1):57-72.
-
(2002)
Mathematical Biosciences
, vol.179
, pp. 57-72
-
-
Alberto, D.1
-
8
-
-
1242264916
-
Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J]
-
1
-
d'Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J]. Applied Mathematics and Computation, 2004, 151(1):181-187.
-
(2004)
Applied Mathematics and Computation
, vol.151
, pp. 181-187
-
-
Alberto, D.1
-
9
-
-
0016586039
-
Vectors and vertical transmission: An epidemiologic perspective[J]
-
11
-
Fine P M. Vectors and vertical transmission: an epidemiologic perspective[J]. Annals of the New York Academy of Sciences, 1975, 266(11):173-194.
-
(1975)
Annals of the New York Academy of Sciences
, vol.266
, pp. 173-194
-
-
Fine, P.M.1
-
13
-
-
0037195889
-
The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]
-
9
-
Lu Zhonghua, Chi Xuebin, Chen Lansun. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Mathematical and Computer Modelling, 2002, 36(9):1039-1057.
-
(2002)
Mathematical and Computer Modelling
, vol.36
, pp. 1039-1057
-
-
Lu, Z.1
Chi, X.2
Chen, Lansun.3
-
14
-
-
18144413585
-
On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]
-
7
-
d'Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Applied Mathematics Letters, 2005, 18(7):729-732.
-
(2005)
Applied Mathematics Letters
, vol.18
, pp. 729-732
-
-
Alberto, D.1
-
16
-
-
30344437549
-
Complexity and asymptotical behavior of a SIRS epidemic model with proportional implse vaccination[J]
-
4
-
Zeng Guangzhao, Chen Lansun. Complexity and asymptotical behavior of a SIRS epidemic model with proportional implse vaccination[J]. Advances in Complex Systems, 2005, 8(4):419-431.
-
(2005)
Advances in Complex Systems
, vol.8
, pp. 419-431
-
-
Zeng, G.1
Chen, Lansun.2
-
19
-
-
1642341634
-
Periodicity in an epidemic model with a generalized non-linear incidence[J]
-
1
-
Alexander M E, Moghadas S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75-96.
-
(2004)
Mathematical Biosciences
, vol.189
, pp. 75-96
-
-
Alexander, M.E.1
Moghadas, S.M.2
-
20
-
-
0343442479
-
Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]
-
6
-
Takeuchi Yasuhiro, Ma Wanbiao, Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis, 2000, 42(6):931-947.
-
(2000)
Nonlinear Analysis
, vol.42
, pp. 931-947
-
-
Takeuchi, Y.1
Ma, W.2
Beretta, Edoardo.3
-
21
-
-
10644240707
-
Global stability of an sir epidemic model with time delay[J]
-
10
-
Ma Wanbiao, Song Mei, Takeuchi Yasuhiro. Global stability of an sir epidemic model with time delay[J]. Applied Mathematics Letters, 2004, 17(10):1141-1145.
-
(2004)
Applied Mathematics Letters
, vol.17
, pp. 1141-1145
-
-
Ma, W.1
Song, M.2
Takeuchi, Yasuhiro.3
-
22
-
-
33846868827
-
The stability of an SIR epidemic model with time delays [J]
-
1
-
Jin Zhen, Ma Zhien. The stability of an SIR epidemic model with time delays [J]. Mathematical Biosciences and Engineering, 2006, 3(1):101-109.
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, pp. 101-109
-
-
Jin, Z.1
Ma, Zhien.2
-
23
-
-
0035425156
-
Global asymptotic stability of an SIR epidemic model with distributed time delay[J]
-
6
-
Beretta Edoardo, Hara Tadayuki, Ma Wangbao, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay[J]. Nonlinear Analysis, 2001, 47(6):4107-4115.
-
(2001)
Nonlinear Analysis
, vol.47
, pp. 4107-4115
-
-
Beretta, E.1
Hara, T.2
Ma, W.3
-
25
-
-
19844369509
-
Absolute stability of impulsive control systems with time delay[J]
-
3
-
Liu Xinzhi, Teo Kok Lay, Zhang Yi. Absolute stability of impulsive control systems with time delay[J]. Nonlinear Analysis, 2005, 62(3):429-453.
-
(2005)
Nonlinear Analysis
, vol.62
, pp. 429-453
-
-
Liu, X.1
Teo, K.L.2
Zhang, Yi.3
-
28
-
-
31244431921
-
Global behavior of an SEIRS epidemic model with time delays[J]
-
4
-
Wang Wendi. Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15(4):423-428.
-
(2002)
Applied Mathematics Letters
, vol.15
, pp. 423-428
-
-
Wang, Wendi.1
|