-
2
-
-
0009858375
-
Resolution theorem proving
-
Robinson, A, Voronkov, A, eds, Elsevier, Amsterdam
-
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 19-100. Elsevier, Amsterdam (2001)
-
(2001)
Handbook of Automated Reasoning
, vol.1
, pp. 19-100
-
-
Bachmair, L.1
Ganzinger, H.2
-
3
-
-
0005401419
-
Refutational Theorem Proving for Hierarchic First-Order Theories
-
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierarchic First-Order Theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193-212 (1994)
-
(1994)
Applicable Algebra in Engineering, Communication and Computing
, vol.5
, Issue.3-4
, pp. 193-212
-
-
Bachmair, L.1
Ganzinger, H.2
Waldmann, U.3
-
4
-
-
0348234226
-
Superposition with completely built-in Abelian groups
-
Godoy, G., Nieuwenhuis, R.: Superposition with completely built-in Abelian groups. J. Symb. Comput. 37(1), 1-33 (2004)
-
(2004)
J. Symb. Comput
, vol.37
, Issue.1
, pp. 1-33
-
-
Godoy, G.1
Nieuwenhuis, R.2
-
5
-
-
38049052894
-
-
Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI, pp. 353-357 (2004)
-
Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI, pp. 353-357 (2004)
-
-
-
-
6
-
-
38049026139
-
-
Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. Journal version (in preparation)
-
Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. Journal version (in preparation)
-
-
-
-
8
-
-
0030101584
-
Normalized rewriting: An alternative to rewriting modulo a set of equations
-
Marché, C.: Normalized rewriting: An alternative to rewriting modulo a set of equations. J. Symb. Comput. 21(3), 253-288 (1996)
-
(1996)
J. Symb. Comput
, vol.21
, Issue.3
, pp. 253-288
-
-
Marché, C.1
-
9
-
-
0000872752
-
Paramodulation-based theorem proving
-
Robinson, A, Voronkov, A, eds, Elsevier, Amsterdam
-
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371-443. Elsevier, Amsterdam (2001)
-
(2001)
Handbook of Automated Reasoning
, vol.1
, pp. 371-443
-
-
Nieuwenhuis, R.1
Rubio, A.2
-
11
-
-
0346949048
-
A precedence-based total AC-compatible ordering
-
Kirchner, C, ed, Rewriting Techniques and Applications, Springer, Heidelberg
-
Rubio, A., Nieuwenhuis, R.: A precedence-based total AC-compatible ordering. In: Kirchner, C. (ed.) Rewriting Techniques and Applications. LNCS, vol. 690, pp. 374-388. Springer, Heidelberg (1993)
-
(1993)
LNCS
, vol.690
, pp. 374-388
-
-
Rubio, A.1
Nieuwenhuis, R.2
-
12
-
-
0346155282
-
Superposition theorem proving for Abelian groups represented as integer modules
-
Stuber, J.: Superposition theorem proving for Abelian groups represented as integer modules. Theor. Comput. Sci. 208(1-2), 149-177 (1998)
-
(1998)
Theor. Comput. Sci
, vol.208
, Issue.1-2
, pp. 149-177
-
-
Stuber, J.1
-
13
-
-
84867786175
-
Superposition and chaining for totally ordered divisible Abelian groups
-
Waldmann, U.: Superposition and chaining for totally ordered divisible Abelian groups. In: International Joint Conference for Automated Reasoning, pp. 226-241 (2001)
-
(2001)
International Joint Conference for Automated Reasoning
, pp. 226-241
-
-
Waldmann, U.1
-
14
-
-
0036633404
-
Cancellative Abelian monoids and related structures in refutational theorem proving (part I, II)
-
Waldmann, U.: Cancellative Abelian monoids and related structures in refutational theorem proving (part I, II). Journal of Symbolic Computation 33(6), 777-829, 831-861 (2002)
-
(2002)
Journal of Symbolic Computation
, vol.33
, Issue.6
-
-
Waldmann, U.1
|