메뉴 건너뛰기




Volumn 582, Issue 2, 2008, Pages 233-237

Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H)

Author keywords

Alcohol dehydrogenase; Coenzyme specificity; Hydrogen bond geometry; Polyol specific long chain dehydrogenases reductases; Protein engineering; Rossmann fold

Indexed keywords

ALANINE; GLUTAMIC ACID; GLYCINE; HYDROXYL GROUP; LYSINE; MANNITOL DEHYDROGENASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 38049044961     PISSN: 00145793     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.febslet.2007.12.008     Document Type: Article
Times cited : (24)

References (28)
  • 1
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • Verho R., Londesborough J., Penttilä M., and Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69 (2003) 5892-5897
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 2
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Förster J., and Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8 (2006) 102-111
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 3
    • 15544372361 scopus 로고    scopus 로고
    • Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc
    • Watanabe S., Kodaki T., and Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280 (2005) 10340-10349
    • (2005) J. Biol. Chem. , vol.280 , pp. 10340-10349
    • Watanabe, S.1    Kodaki, T.2    Makino, K.3
  • 4
    • 12844287005 scopus 로고    scopus 로고
    • The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography
    • Petschacher B., Leitgeb S., Kavanagh K.L., Wilson D.K., and Nidetzky B. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem. J. 385 (2005) 75-83
    • (2005) Biochem. J. , vol.385 , pp. 75-83
    • Petschacher, B.1    Leitgeb, S.2    Kavanagh, K.L.3    Wilson, D.K.4    Nidetzky, B.5
  • 5
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken J.P., and Scheffers W.A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32 (1986) 199-224
    • (1986) FEMS Microbiol. Rev. , vol.32 , pp. 199-224
    • van Dijken, J.P.1    Scheffers, W.A.2
  • 6
    • 0023032668 scopus 로고
    • The NADP(H) redox couple in yeast metabolism
    • Bruinenberg P.M. The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52 (1986) 411-429
    • (1986) Antonie Van Leeuwenhoek , vol.52 , pp. 411-429
    • Bruinenberg, P.M.1
  • 8
    • 26844452043 scopus 로고    scopus 로고
    • Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
    • Petschacher B., and Nidetzky B. Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl. Environ. Microbiol. 71 (2005) 6390-6393
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 6390-6393
    • Petschacher, B.1    Nidetzky, B.2
  • 9
    • 0344211469 scopus 로고    scopus 로고
    • Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships
    • Klimacek M., Kavanagh K.L., Wilson D.K., and Nidetzky B. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships. Chem. Biol. Interact. 143-144 (2003) 559-582
    • (2003) Chem. Biol. Interact. , vol.143-144 , pp. 559-582
    • Klimacek, M.1    Kavanagh, K.L.2    Wilson, D.K.3    Nidetzky, B.4
  • 10
    • 38049049421 scopus 로고    scopus 로고
    • Fungal mannitol 2-dehydrogenases and mannitol-1-phosphate 5-dehydrogenases constitute novel branches in the protein family of polyol-specific long-chain dehydrogenases and reductases
    • Weiner H., Maser E., Lindahl R., and Plapp B.V. (Eds), Purdue University Press, West Lafayette, IN
    • Nidetzky B., and Klimacek M. Fungal mannitol 2-dehydrogenases and mannitol-1-phosphate 5-dehydrogenases constitute novel branches in the protein family of polyol-specific long-chain dehydrogenases and reductases. In: Weiner H., Maser E., Lindahl R., and Plapp B.V. (Eds). Enzymology and Molecular Biology of Carbonyl Metabolism Vol. 13 (2007), Purdue University Press, West Lafayette, IN 305-322
    • (2007) Enzymology and Molecular Biology of Carbonyl Metabolism , vol.13 , pp. 305-322
    • Nidetzky, B.1    Klimacek, M.2
  • 11
    • 0033543212 scopus 로고    scopus 로고
    • Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens
    • Slatner M., Nidetzky B., and Kulbe K.D. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Biochemistry 38 (1999) 10489-10498
    • (1999) Biochemistry , vol.38 , pp. 10489-10498
    • Slatner, M.1    Nidetzky, B.2    Kulbe, K.D.3
  • 12
    • 0037044776 scopus 로고    scopus 로고
    • Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism
    • Kavanagh K.L., Klimacek M., Nidetzky B., and Wilson D.K. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism. J. Biol. Chem. 277 (2002) 43433-43442
    • (2002) J. Biol. Chem. , vol.277 , pp. 43433-43442
    • Kavanagh, K.L.1    Klimacek, M.2    Nidetzky, B.3    Wilson, D.K.4
  • 13
    • 0030893657 scopus 로고    scopus 로고
    • NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding
    • Carugo O., and Argos P. NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28 (1997) 10-28
    • (1997) Proteins , vol.28 , pp. 10-28
    • Carugo, O.1    Argos, P.2
  • 14
    • 0032957639 scopus 로고    scopus 로고
    • Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis
    • Wang W., and Malcolm B.A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. Biotechniques 26 (1999) 680-682
    • (1999) Biotechniques , vol.26 , pp. 680-682
    • Wang, W.1    Malcolm, B.A.2
  • 15
    • 0031579663 scopus 로고    scopus 로고
    • Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli
    • Brünker P., Altenbuchner J., Kulbe K.D., and Mattes R. Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli. Biochim. Biophys. Acta 1351 (1997) 157-167
    • (1997) Biochim. Biophys. Acta , vol.1351 , pp. 157-167
    • Brünker, P.1    Altenbuchner, J.2    Kulbe, K.D.3    Mattes, R.4
  • 17
    • 0037031248 scopus 로고    scopus 로고
    • +-dependent oxidation of secondary alcohols catalyzed by long-chain d-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects
    • +-dependent oxidation of secondary alcohols catalyzed by long-chain d-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects. Biochemistry 41 (2002) 10158-10165
    • (2002) Biochemistry , vol.41 , pp. 10158-10165
    • Klimacek, M.1    Nidetzky, B.2
  • 18
    • 0029845902 scopus 로고    scopus 로고
    • The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins
    • Bellamacina C.R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 10 (1996) 1257-1269
    • (1996) FASEB J. , vol.10 , pp. 1257-1269
    • Bellamacina, C.R.1
  • 20
    • 0027480616 scopus 로고
    • Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering
    • Bocanegra J.A., Scrutton N.S., and Perham R.N. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32 (1993) 2737-2740
    • (1993) Biochemistry , vol.32 , pp. 2737-2740
    • Bocanegra, J.A.1    Scrutton, N.S.2    Perham, R.N.3
  • 21
    • 3042759866 scopus 로고    scopus 로고
    • Conversion of cofactor specificities of alanine dehydrogenases by site-directed mutagenesis
    • Ashida H., Galkin A., Kulakova L., Sawa Y., Nakajima N., and Esaki N. Conversion of cofactor specificities of alanine dehydrogenases by site-directed mutagenesis. J. Mol. Cat. B: Enyzmatic 30 (2004) 173-176
    • (2004) J. Mol. Cat. B: Enyzmatic , vol.30 , pp. 173-176
    • Ashida, H.1    Galkin, A.2    Kulakova, L.3    Sawa, Y.4    Nakajima, N.5    Esaki, N.6
  • 22
    • 0028904688 scopus 로고
    • D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus d-lactate dehydrogenase
    • Bernard N., Johnsen K., Holbrook J.J., and Delcour J. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus d-lactate dehydrogenase. Biochem. Biophys. Res. Commun. 208 (1995) 895-900
    • (1995) Biochem. Biophys. Res. Commun. , vol.208 , pp. 895-900
    • Bernard, N.1    Johnsen, K.2    Holbrook, J.J.3    Delcour, J.4
  • 23
    • 0141954197 scopus 로고    scopus 로고
    • Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design
    • Woodyer R., van der Donk W.A., and Zhao H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42 (2003) 11604-11614
    • (2003) Biochemistry , vol.42 , pp. 11604-11614
    • Woodyer, R.1    van der Donk, W.A.2    Zhao, H.3
  • 24
    • 0025867105 scopus 로고
    • An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme
    • Fan F., Lorenzen J.A., and Plapp B.V. An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme. Biochemistry 30 (1991) 6397-6401
    • (1991) Biochemistry , vol.30 , pp. 6397-6401
    • Fan, F.1    Lorenzen, J.A.2    Plapp, B.V.3
  • 25
    • 33644843318 scopus 로고    scopus 로고
    • Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity
    • Ehrensberger A.H., Elling R.A., and Wilson D.K. Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity. Structure 14 (2006) 567-575
    • (2006) Structure , vol.14 , pp. 567-575
    • Ehrensberger, A.H.1    Elling, R.A.2    Wilson, D.K.3
  • 26
    • 34548011230 scopus 로고    scopus 로고
    • Z.m. increases d-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum
    • Z.m. increases d-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76 (2007) 545-552
    • (2007) Appl. Microbiol. Biotechnol. , vol.76 , pp. 545-552
    • Bäumchen, C.1    Bringer-Meyer, S.2
  • 27
    • 28444455948 scopus 로고    scopus 로고
    • d-Mannitol formation from d-glucose in a whole-cell biotransformation with recombinant Escherichia coli
    • Kaup B., Bringer-Meyer S., and Sahm H. d-Mannitol formation from d-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 69 (2005) 397-403
    • (2005) Appl. Microbiol. Biotechnol. , vol.69 , pp. 397-403
    • Kaup, B.1    Bringer-Meyer, S.2    Sahm, H.3
  • 28
    • 0032434671 scopus 로고    scopus 로고
    • Enzymatic synthesis of mannitol. Reaction engineering for a recombinant mannitol dehydrogenase
    • Slatner M., Nagl G., Haltrich D., Kulbe K.D., and Nidetzky B. Enzymatic synthesis of mannitol. Reaction engineering for a recombinant mannitol dehydrogenase. Biocat. Biotrans. 864 (1998) 450-453
    • (1998) Biocat. Biotrans. , vol.864 , pp. 450-453
    • Slatner, M.1    Nagl, G.2    Haltrich, D.3    Kulbe, K.D.4    Nidetzky, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.