-
1
-
-
84896754098
-
Polynomial time recognition of clique-width < 3 graphs (extended abstract)
-
Gonnet, G.H, et al, eds, LATIN 2000, Springer, Heidelberg
-
Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial time recognition of clique-width < 3 graphs (extended abstract). In: Gonnet, G.H., et al. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 126-134. Springer, Heidelberg (2000)
-
(2000)
LNCS
, vol.1776
, pp. 126-134
-
-
Corneil, D.G.1
Habib, M.2
Lanlignel, J.M.3
Reed, B.4
Rotics, U.5
-
2
-
-
0022162058
-
A linear recognition algorithm for cographs
-
Corneil, D.G., Perl, Y., Stewart, L.K: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926-934 (1985)
-
(1985)
SIAM J. Comput
, vol.14
, Issue.4
, pp. 926-934
-
-
Corneil, D.G.1
Perl, Y.2
Stewart, L.K.3
-
3
-
-
0034399867
-
Linear time solvable optimization problems on graphs of bounded clique-width
-
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125-150 (2000)
-
(2000)
Theory Comput. Syst
, vol.33
, Issue.2
, pp. 125-150
-
-
Courcelle, B.1
Makowsky, J.A.2
Rotics, U.3
-
4
-
-
0002015577
-
Upper bounds to the clique width of graphs
-
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77-114 (2000)
-
(2000)
Discrete Appl. Math
, vol.101
, Issue.1-3
, pp. 77-114
-
-
Courcelle, B.1
Olariu, S.2
-
5
-
-
33751429952
-
Vertex-minors, monadic second-order logic, and a conjecture by Seese
-
Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. J. Combin. Theory Ser. B 97(1), 91-126 (2007)
-
(2007)
J. Combin. Theory Ser. B
, vol.97
, Issue.1
, pp. 91-126
-
-
Courcelle, B.1
Oum, S.2
-
6
-
-
84945303807
-
-
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, 2204, Springer, Heidelberg (2001)
-
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, Springer, Heidelberg (2001)
-
-
-
-
7
-
-
33748114479
-
Clique-width minimization is NP-hard
-
ACM Press, New York, USA
-
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In: Proceedings of the 38th annual ACM Symposium on Theory of Computing, pp. 354-362. ACM Press, New York, USA (2006)
-
(2006)
Proceedings of the 38th annual ACM Symposium on Theory of Computing
, pp. 354-362
-
-
Fellows, M.R.1
Rosamond, F.A.2
Rotics, U.3
Szeider, S.4
-
8
-
-
0038349568
-
On the excluded minors for the matroids of branch-width k
-
Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.: On the excluded minors for the matroids of branch-width k. J. Combin. Theory Ser. B 88(2), 261-265 (2003)
-
(2003)
J. Combin. Theory Ser. B
, vol.88
, Issue.2
, pp. 261-265
-
-
Geelen, J.F.1
Gerards, A.M.H.2
Robertson, N.3
Whittle, G.4
-
9
-
-
38049029854
-
Tangles, tree-decompositions, and grids in matroids
-
04-5, School of Mathematical and Computing Sciences, Victoria University of Wellington
-
Geelen, J.F., Gerards, A.M.H., Whittle, G.: Tangles, tree-decompositions, and grids in matroids. Research Report 04-5, School of Mathematical and Computing Sciences, Victoria University of Wellington (2004)
-
(2004)
Research Report
-
-
Geelen, J.F.1
Gerards, A.M.H.2
Whittle, G.3
-
10
-
-
0037453456
-
Algorithms for vertex-partitioning problems on graphs with fixed clique-width
-
Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoret. Comput. Sci. 299(1-3), 719-734 (2003)
-
(2003)
Theoret. Comput. Sci
, vol.299
, Issue.1-3
, pp. 719-734
-
-
Gerber, M.U.1
Kobler, D.2
-
11
-
-
34447316703
-
The branchwidth of graphs and their cycle matroids
-
Hicks, I.V., McMurray, Jr., N.B.: The branchwidth of graphs and their cycle matroids. J. Combin. Theory Ser. B, 97(5), 681-692, (2007)
-
(2007)
J. Combin. Theory Ser. B
, vol.97
, Issue.5
, pp. 681-692
-
-
Hicks, I.V.1
McMurray Jr., N.B.2
-
12
-
-
32144446394
-
-
Hliněný, P.: A parametrized algorithm for matroid branch-width (loose erratum (electronic)). SIAM J. Comput. 35(2), 259-277 (2005)
-
Hliněný, P.: A parametrized algorithm for matroid branch-width (loose erratum (electronic)). SIAM J. Comput. 35(2), 259-277 (2005)
-
-
-
-
13
-
-
33645920646
-
Branch-width, parse trees, and monadic second-order logic for matroids
-
Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for matroids. J. Combin. Theory Ser. B 96(3), 325-351 (2006)
-
(2006)
J. Combin. Theory Ser. B
, vol.96
, Issue.3
, pp. 325-351
-
-
Hliněný, P.1
-
14
-
-
84867942957
-
Edge dominating set and colorings on graphs with fixed clique-width
-
Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Appl. Math. 126(2-3), 197-221 (2003)
-
(2003)
Discrete Appl. Math
, vol.126
, Issue.2-3
, pp. 197-221
-
-
Kobler, D.1
Rotics, U.2
-
15
-
-
38049068888
-
Branchwidth of graphic matroids
-
Manuscript
-
Mazoit, F., Thomassé, S.: Branchwidth of graphic matroids. Manuscript (2005)
-
(2005)
-
-
Mazoit, F.1
Thomassé, S.2
-
16
-
-
33744946823
-
Approximating rank-width and clique-width quickly
-
Kratsch, D, ed, WG, Springer, Heidelberg
-
Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49-58. Springer, Heidelberg (2005)
-
(2005)
LNCS
, vol.3787
, pp. 49-58
-
-
Oum, S.1
-
17
-
-
23244468510
-
Rank-width and vertex-minors
-
Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1), 79-100 (2005)
-
(2005)
J. Combin. Theory Ser. B
, vol.95
, Issue.1
, pp. 79-100
-
-
Oum, S.1
-
18
-
-
38049043570
-
Approximating rank-width and clique-width quickly
-
abstract appeared in
-
Oum, S.: Approximating rank-width and clique-width quickly. Submitted, an extended abstract appeared in [16] (2006)
-
(2006)
Submitted, an extended
, pp. 16
-
-
Oum, S.1
-
19
-
-
32544455938
-
Approximating clique-width and branch-width
-
Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514-528 (2006)
-
(2006)
J. Combin. Theory Ser. B
, vol.96
, Issue.4
, pp. 514-528
-
-
Oum, S.1
Seymour, P.2
-
21
-
-
0004061262
-
-
Oxford University Press, New York
-
Oxley, J.G.: Matroid theory. Oxford University Press, New York (1992)
-
(1992)
Matroid theory
-
-
Oxley, J.G.1
-
22
-
-
0001227241
-
-
Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153-190 (1991)
-
Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153-190 (1991)
-
-
-
-
23
-
-
0038521887
-
Call routing and the ratcatcher
-
Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217-241 (1994)
-
(1994)
Combinatorica
, vol.14
, Issue.2
, pp. 217-241
-
-
Seymour, P.1
Thomas, R.2
-
24
-
-
0039301943
-
k-NLC graphs and polynomial algorithms
-
Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54(2-3), 251-266 (1994)
-
(1994)
Discrete Appl. Math
, vol.54
, Issue.2-3
, pp. 251-266
-
-
Wanke, E.1
|