-
1
-
-
26244462090
-
-
JAPIAU 0021-8979 10.1063/1.2058175.
-
B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2058175 98, 064903 (2005).
-
(2005)
J. Appl. Phys.
, vol.98
, pp. 064903
-
-
Bockmon, B.S.1
Pantoya, M.L.2
Son, S.F.3
Asay, B.W.4
Mang, J.T.5
-
2
-
-
14744278054
-
-
CBFMAO 0010-2180 10.1016/j.combustflame.2004.10.009.
-
K. B. Plantier, M. L. Pantoya, and A. E. Gash, Combust. Flame CBFMAO 0010-2180 10.1016/j.combustflame.2004.10.009 140, 299 (2005).
-
(2005)
Combust. Flame
, vol.140
, pp. 299
-
-
Plantier, K.B.1
Pantoya, M.L.2
Gash, A.E.3
-
3
-
-
2642537563
-
-
CBFMAO 0010-2180 10.1016/j.combustflame.2004.05.006.
-
J. Granier and M. L. Pantoya, Combust. Flame CBFMAO 0010-2180 10.1016/j.combustflame.2004.05.006 138, 373 (2004).
-
(2004)
Combust. Flame
, vol.138
, pp. 373
-
-
Granier, J.1
Pantoya, M.L.2
-
4
-
-
17844394996
-
-
JPCBFK 1089-5647.
-
K. Park, D. Lee, A. Rai, D. Mukherjee, and M. Zachariah, J. Phys. Chem. B JPCBFK 1089-5647 109, 7290 (2005).
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 7290
-
-
Park, K.1
Lee, D.2
Rai, A.3
Mukherjee, D.4
Zachariah, M.5
-
5
-
-
33749843984
-
-
CTMOFQ 1364-7830.
-
A. Rai, K. Park, L. Zhou, and M. Zachariah, Combust. Theory Modell. CTMOFQ 1364-7830 10, 843 (2006).
-
(2006)
Combust. Theory Modell.
, vol.10
, pp. 843
-
-
Rai, A.1
Park, K.2
Zhou, L.3
Zachariah, M.4
-
6
-
-
1942541278
-
-
CBFMAO 0010-2180 10.1016/j.combustflame.2004.02.009.
-
V. Rosenband, Combust. Flame CBFMAO 0010-2180 10.1016/j.combustflame. 2004.02.009 137, 366 (2004).
-
(2004)
Combust. Flame
, vol.137
, pp. 366
-
-
Rosenband, V.1
-
7
-
-
14744278581
-
-
CBFMAO 0010-2180 10.1016/j.combustflame.2004.10.010.
-
M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin, Combust. Flame CBFMAO 0010-2180 10.1016/j.combustflame.2004.10.010 140, 310 (2005).
-
(2005)
Combust. Flame
, vol.140
, pp. 310
-
-
Trunov, M.A.1
Schoenitz, M.2
Zhu, X.3
Dreizin, E.L.4
-
8
-
-
33747484147
-
-
APPLAB 0003-6951 10.1063/1.2335362.
-
V. I. Levitas, B. W. Asay, S. F. Son, and M. L. Pantoya, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2335362 89, 071909 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 071909
-
-
Levitas, V.I.1
Asay, B.W.2
Son, S.F.3
Pantoya, M.L.4
-
9
-
-
34247891658
-
-
JAPIAU 0021-8979 10.1063/1.2720182.
-
V. I. Levitas, B. W. Asay, S. F. Son, and M. L. Pantoya, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2720182 101, 083524 (2007).
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 083524
-
-
Levitas, V.I.1
Asay, B.W.2
Son, S.F.3
Pantoya, M.L.4
-
10
-
-
23844527212
-
-
Current trends are to substitute the oxide shell with metals such as gold, nickel, and silver [, CMATEX 0897-4756, ()] or C13 F27 COOH [, Mater. Sci. Technol. MSCTEP 0267-0836 22, 422 (2006)] to reduce the dead weight and initial barrier for diffusion. This is useful for some applications but not for those where the goal is to increase the reaction and flame velocity, because the strength of such shells is significantly lower compared to alumina and MDM cannot operate. Indeed, even bare Al nanoparticles with D=20 nm require more than 1 s for complete oxidation at T=900 °C (Ref.).
-
Current trends are to substitute the oxide shell with metals such as gold, nickel, and silver [T. J. Foley, C. E. Johnson, and K. T. Higa, Chem. Mater. CMATEX 0897-4756 16, 4086 (2005)] or C13 F27 COOH [R. J. Jouet, J. R. Carney, R. H. Granholm, H. W. Sandusky, and A. D. Warren, Mater. Sci. Technol. MSCTEP 0267-0836 22, 422 (2006)] to reduce the dead weight and initial barrier for diffusion. This is useful for some applications but not for those where the goal is to increase the reaction and flame velocity, because the strength of such shells is significantly lower compared to alumina and MDM cannot operate. Indeed, even bare Al nanoparticles with D=20 nm require more than 1 s for complete oxidation at T=900 °C (Ref.).
-
(2005)
Chem. Mater.
, vol.16
, pp. 4086
-
-
Foley, T.J.1
Johnson, C.E.2
Higa, K.T.3
Jouet, R.J.4
Carney, J.R.5
Granholm, R.H.6
Sandusky, H.W.7
Warren, A.D.8
|