메뉴 건너뛰기




Volumn 17, Issue 1, 2007, Pages 17-31

Convergence and steady-state analysis of the normalized least mean fourth algorithm

Author keywords

LMF algorithm; LMS algorithm; NLMF algorithm; NLMS algorithm

Indexed keywords

COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; CORRELATION METHODS; DATA REDUCTION; STATISTICAL METHODS;

EID: 37849185600     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2006.01.005     Document Type: Article
Times cited : (64)

References (20)
  • 1
    • 0016987049 scopus 로고
    • Stationary and nonstationary learning characteristics of the LMS adaptive filter
    • Widrow B., McCool J.M., Larimore M.G., and Johnson C.R. Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proc. IEEE 64 8 (1976) 1151-1162
    • (1976) Proc. IEEE , vol.64 , Issue.8 , pp. 1151-1162
    • Widrow, B.1    McCool, J.M.2    Larimore, M.G.3    Johnson, C.R.4
  • 3
    • 0021392489 scopus 로고
    • The least mean fourth (LMF) adaptive algorithm and its family
    • Walach E., and Widrow B. The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inform. Theory IT-30 (1984) 275-283
    • (1984) IEEE Trans. Inform. Theory , vol.IT-30 , pp. 275-283
    • Walach, E.1    Widrow, B.2
  • 6
    • 0028444674 scopus 로고
    • Normalized data nonlinearities for LMS adaptation
    • Douglas S.C., and Meng T.H.-Y. Normalized data nonlinearities for LMS adaptation. IEEE Trans. Signal Process. SP-42 (1994) 1352-1365
    • (1994) IEEE Trans. Signal Process. , vol.SP-42 , pp. 1352-1365
    • Douglas, S.C.1    Meng, T.H.-Y.2
  • 7
    • 33846451627 scopus 로고
    • A Learning method for system identification
    • Nagumo J., and Noda A. A Learning method for system identification. IEEE Trans. Automat. Control AC-12 (1967) 282-287
    • (1967) IEEE Trans. Automat. Control , vol.AC-12 , pp. 282-287
    • Nagumo, J.1    Noda, A.2
  • 8
    • 0024035649 scopus 로고
    • Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data
    • Tarrab M., and Feuer A. Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data. IEEE Trans. Inform. Theory IT-34 (1988) 680-691
    • (1988) IEEE Trans. Inform. Theory , vol.IT-34 , pp. 680-691
    • Tarrab, M.1    Feuer, A.2
  • 9
    • 0027667902 scopus 로고
    • On the convergence behavior of the LMS and NLMS algorithms
    • Solck D.T.M. On the convergence behavior of the LMS and NLMS algorithms. IEEE Trans. Signal Process. 41 (1993) 2811-2825
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 2811-2825
    • Solck, D.T.M.1
  • 10
    • 0018469205 scopus 로고
    • On the independence theory of equalizer convergence
    • Mazo J.E. On the independence theory of equalizer convergence. Bell Syst. Tech. J. 58 5 (1979) 963-993
    • (1979) Bell Syst. Tech. J. , vol.58 , Issue.5 , pp. 963-993
    • Mazo, J.E.1
  • 11
    • 0022902392 scopus 로고
    • Performance analysis of the LMS algorithm with a tapped delay line: Two-dimensional case
    • Florian S., and Feuer A. Performance analysis of the LMS algorithm with a tapped delay line: Two-dimensional case. IEEE Trans. Acoust. Speech, Signal Process. ASSP-34 6 (1986) 1542-1549
    • (1986) IEEE Trans. Acoust. Speech, Signal Process. , vol.ASSP-34 , Issue.6 , pp. 1542-1549
    • Florian, S.1    Feuer, A.2
  • 12
    • 3242822207 scopus 로고    scopus 로고
    • Novel LMS-LMF adaptive scheme for echo cancellation
    • Zerguine A., Cowan C.F.N., and Bettayeb M. Novel LMS-LMF adaptive scheme for echo cancellation. Electron. Lett. 32 19 (1996) 1776-1778
    • (1996) Electron. Lett. , vol.32 , Issue.19 , pp. 1776-1778
    • Zerguine, A.1    Cowan, C.F.N.2    Bettayeb, M.3
  • 13
    • 0031143940 scopus 로고    scopus 로고
    • Adaptive echo cancellation using least mean mixed-norm algorithm
    • Zerguine A., Cowan C.F.N., and Bettayeb M. Adaptive echo cancellation using least mean mixed-norm algorithm. IEEE Trans. Signal Process. SP-45 5 (1997) 1340-1343
    • (1997) IEEE Trans. Signal Process. , vol.SP-45 , Issue.5 , pp. 1340-1343
    • Zerguine, A.1    Cowan, C.F.N.2    Bettayeb, M.3
  • 14
    • 0030169938 scopus 로고    scopus 로고
    • Convergence and steady-state properties of the least mean mixed-norm (LMMN) adaptive filtering
    • Tanrikulu O., and Chambers J.A. Convergence and steady-state properties of the least mean mixed-norm (LMMN) adaptive filtering. IEE Proc. Vis. Image Signal Process. 143 3 (1996) 137-142
    • (1996) IEE Proc. Vis. Image Signal Process. , vol.143 , Issue.3 , pp. 137-142
    • Tanrikulu, O.1    Chambers, J.A.2
  • 15
    • 0033324691 scopus 로고    scopus 로고
    • T. Aboulnasr, A. Zerguine, Variable weight mixed-norm LMS-LMF adaptive algorithm, in: Proc. 33rd Annual Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, October 1999
  • 17
    • 0030169671 scopus 로고    scopus 로고
    • A time-domain feedback analysis of filtered-error adaptive gradient algorithms
    • Rupp M., and Sayed A.H. A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Process. 44 (1996) 1428-1439
    • (1996) IEEE Trans. Signal Process. , vol.44 , pp. 1428-1439
    • Rupp, M.1    Sayed, A.H.2
  • 19
    • 37949023172 scopus 로고    scopus 로고
    • N.R. Yousef, A.H. Sayed, A unified approach to the steady-state and tracking analyses of adaptive filtering algorithms, in: Proc. 4th IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 2, Antalya, Turkey, June 1999, pp. 699-703
  • 20
    • 0037410038 scopus 로고    scopus 로고
    • Convergence and steady-state analysis of a variable step-size NLMS algorithm
    • Sulyman A.I., and Zerguine A. Convergence and steady-state analysis of a variable step-size NLMS algorithm. Signal Process. 83 6 (2003) 1255-1273
    • (2003) Signal Process. , vol.83 , Issue.6 , pp. 1255-1273
    • Sulyman, A.I.1    Zerguine, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.