메뉴 건너뛰기




Volumn 105, Issue 5, 2008, Pages 194-198

Adding cardinality constraints to integer programs with applications to maximum satisfiability

Author keywords

Approximation algorithms; Cardinality constraints; Randomized algorithms; Satisfiability

Indexed keywords

APPROXIMATION THEORY; INTEGER PROGRAMMING; PROBLEM SOLVING; RANDOM VARIABLES;

EID: 37849041213     PISSN: 00200190     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipl.2007.08.024     Document Type: Article
Times cited : (3)

References (13)
  • 1
    • 4344588928 scopus 로고    scopus 로고
    • Pipage rounding: A new method of constructing algorithms with proven performance guarantee
    • Ageev A.A., and Sviridenko M.I. Pipage rounding: A new method of constructing algorithms with proven performance guarantee. Journal of Combinatorial Optimization 8 3 (2004) 307-328
    • (2004) Journal of Combinatorial Optimization , vol.8 , Issue.3 , pp. 307-328
    • Ageev, A.A.1    Sviridenko, M.I.2
  • 2
    • 0036462085 scopus 로고    scopus 로고
    • Improved approximation algorithms for MAX SAT
    • Asano T., and Williamson D.P. Improved approximation algorithms for MAX SAT. Journal of Algorithms 42 1 (2002) 173-202
    • (2002) Journal of Algorithms , vol.42 , Issue.1 , pp. 173-202
    • Asano, T.1    Williamson, D.P.2
  • 3
    • 84878640869 scopus 로고    scopus 로고
    • Improved approximation algorithms for Max-2SAT with cardinality constraint
    • Proc. of the 13th Ann. Int. Symp. on Algorithms and Computation (ISAAC). Bose P., and Morin P. (Eds), Springer
    • Bläser M., and Manthey B. Improved approximation algorithms for Max-2SAT with cardinality constraint. In: Bose P., and Morin P. (Eds). Proc. of the 13th Ann. Int. Symp. on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science vol. 2518 (2002), Springer 187-198
    • (2002) Lecture Notes in Computer Science , vol.2518 , pp. 187-198
    • Bläser, M.1    Manthey, B.2
  • 5
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln n for approximating set cover
    • Feige U. A threshold of ln n for approximating set cover. Journal of the ACM 45 4 (1998) 634-652
    • (1998) Journal of the ACM , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 6
    • 85027123851 scopus 로고    scopus 로고
    • U. Feige, M.X. Goemans, Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT, in: Proc. of the 3rd Israel Symp. on the Theory of Computing Systems (ISTCS), 1995, pp. 182-189
  • 7
    • 0000175256 scopus 로고
    • New frac(3, 4)-approximation algorithms for the maximum satisfiability problem
    • Goemans M.X., and Williamson D.P. New frac(3, 4)-approximation algorithms for the maximum satisfiability problem. SIAM Journal on Discrete Mathematics 7 4 (1994) 656-666
    • (1994) SIAM Journal on Discrete Mathematics , vol.7 , Issue.4 , pp. 656-666
    • Goemans, M.X.1    Williamson, D.P.2
  • 8
    • 0000844603 scopus 로고    scopus 로고
    • Some optimal inapproximability results
    • Håstad J. Some optimal inapproximability results. Journal of the ACM 48 4 (2001) 798-859
    • (2001) Journal of the ACM , vol.48 , Issue.4 , pp. 798-859
    • Håstad, J.1
  • 9
    • 0142214932 scopus 로고    scopus 로고
    • An approximation algorithm for Max-2-SAT with cardinality constraint
    • Proc. of the 11th Ann. European Symp. on Algorithms (ESA). Di Battista G., and Zwick U. (Eds), Springer
    • Hofmeister T. An approximation algorithm for Max-2-SAT with cardinality constraint. In: Di Battista G., and Zwick U. (Eds). Proc. of the 11th Ann. European Symp. on Algorithms (ESA). Lecture Notes in Computer Science vol. 2832 (2003), Springer 301-312
    • (2003) Lecture Notes in Computer Science , vol.2832 , pp. 301-312
    • Hofmeister, T.1
  • 12
    • 0242364694 scopus 로고    scopus 로고
    • Best possible approximation algorithm for MAX SAT with cardinality constraint
    • Sviridenko M.I. Best possible approximation algorithm for MAX SAT with cardinality constraint. Algorithmica 30 3 (2001) 398-405
    • (2001) Algorithmica , vol.30 , Issue.3 , pp. 398-405
    • Sviridenko, M.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.