메뉴 건너뛰기




Volumn 28, Issue 1, 2008, Pages 121-142

Locality properties of radial basis function expansion coefficients for equispaced interpolation

Author keywords

Cardinal interpolation; Radial basis functions; RBF

Indexed keywords

DECAY (ORGANIC); FUNCTIONS; HEAT CONDUCTION; IMAGE SEGMENTATION; INTERPOLATION; ITERATIVE METHODS;

EID: 37849035241     PISSN: 02724979     EISSN: 14643642     Source Type: Journal    
DOI: 10.1093/imanum/drm014     Document Type: Article
Times cited : (23)

References (21)
  • 1
  • 5
    • 0039433605 scopus 로고
    • Multivariate interpolation with radial basis functions
    • 1988/NA8. University of Cambridge
    • BUHMANN, M. D. (1988) Multivariate interpolation with radial basis functions. Technical Report DAMPT 1988/NA8. University of Cambridge.
    • (1988) Technical Report DAMPT
    • BUHMANN, M.D.1
  • 6
    • 0009586550 scopus 로고
    • On quasi-interpolation with radial basis functions
    • BUHMANN, M. D. (1993) On quasi-interpolation with radial basis functions. J. Approx. Theory, 72, 103-230.
    • (1993) J. Approx. Theory , vol.72 , pp. 103-230
    • BUHMANN, M.D.1
  • 8
    • 3342895239 scopus 로고
    • Radial basis function interpolation on an infinite regular grid
    • J. C. Mason & M. G. Cox eds, Chapman and Hall, pp
    • BUHMANN, M. D. & POWELL, M. J. D. (1990) Radial basis function interpolation on an infinite regular grid. Algorithms for Approximation 11 (J. C. Mason & M. G. Cox eds). Chapman and Hall, pp. 146-169.
    • (1990) Algorithms for Approximation 11 , pp. 146-169
    • BUHMANN, M.D.1    POWELL, M.J.D.2
  • 10
    • 0036467951 scopus 로고    scopus 로고
    • Interpolation in the limit of increasingly flat radial basis functions
    • DRISCOLL, T. A. & FORNBERG, B. (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput. Math Appl., 43, 413-422.
    • (2002) Comput. Math Appl , vol.43 , pp. 413-422
    • DRISCOLL, T.A.1    FORNBERG, B.2
  • 11
    • 11444267842 scopus 로고    scopus 로고
    • Krylov subspace methods for radial function interpolation
    • D. F. Griffiths & G. A. Watson eds, Chapman and Hall, pp
    • FAUL, A. C. & POWELL, M. J. D. (2000) Krylov subspace methods for radial function interpolation. Numerical Analysis 1999 (D. F. Griffiths & G. A. Watson eds). Chapman and Hall, pp. 115-141.
    • (2000) Numerical Analysis 1999 , pp. 115-141
    • FAUL, A.C.1    POWELL, M.J.D.2
  • 12
    • 33745902241 scopus 로고    scopus 로고
    • Exact polynomial reproduction for oscillatory radial basis functions on infinite lattices
    • FLYER, N. (2006) Exact polynomial reproduction for oscillatory radial basis functions on infinite lattices. Comput. Math. Appl., 51, 1199-1208.
    • (2006) Comput. Math. Appl , vol.51 , pp. 1199-1208
    • FLYER, N.1
  • 14
    • 0036467591 scopus 로고    scopus 로고
    • Observations on the behavior of radial basis functions near boundaries
    • FORNBERG, B., DRISCOLL, T. A., WRIGHT, G. & CHARLES, R. (2002) Observations on the behavior of radial basis functions near boundaries. Comput. Math. Appl., 43, 473-490.
    • (2002) Comput. Math. Appl , vol.43 , pp. 473-490
    • FORNBERG, B.1    DRISCOLL, T.A.2    WRIGHT, G.3    CHARLES, R.4
  • 16
    • 33745894671 scopus 로고    scopus 로고
    • A new class of oscillatory radial basis functions
    • FORNBERG, B., LARSSON, E. & WRIGHT, G. (2006) A new class of oscillatory radial basis functions. Comput. Math. Appl., 1209-1222.
    • (2006) Comput. Math. Appl , pp. 1209-1222
    • FORNBERG, B.1    LARSSON, E.2    WRIGHT, G.3
  • 17
    • 14644431037 scopus 로고    scopus 로고
    • Stable computation of multiquadric interpolants for all values of the shape parameter
    • FORNBERG, B. & WRIGHT, G. (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl., 48, 853-867.
    • (2004) Comput. Math. Appl , vol.48 , pp. 853-867
    • FORNBERG, B.1    WRIGHT, G.2
  • 18
    • 0942300715 scopus 로고    scopus 로고
    • Some observations regarding interpolants in the limit of flat radial basis functions
    • FORNBERG, B., WRIGHT, G. & LARSSON, E. (2004) Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl., 47, 37-55.
    • (2004) Comput. Math. Appl , vol.47 , pp. 37-55
    • FORNBERG, B.1    WRIGHT, G.2    LARSSON, E.3
  • 19
    • 0031324470 scopus 로고    scopus 로고
    • Normal scale mixtures and dual probability densities
    • GNEITING, T. (1997) Normal scale mixtures and dual probability densities. J. Stat. Comput. Simul., 59, 375-384.
    • (1997) J. Stat. Comput. Simul , vol.59 , pp. 375-384
    • GNEITING, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.