메뉴 건너뛰기




Volumn 474, Issue 1-2, 2008, Pages 247-253

A neural network model to predict low cycle fatigue life of nitrogen-alloyed 316L stainless steel

Author keywords

316 SS; Low cycle fatigue life; Modeling; Neural network

Indexed keywords

FATIGUE OF MATERIALS; FATIGUE TESTING; MATHEMATICAL MODELS; NEURAL NETWORKS; NITROGEN; STRAIN RATE;

EID: 37749028786     PISSN: 09215093     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.msea.2007.04.018     Document Type: Article
Times cited : (39)

References (19)
  • 1
    • 85162588757 scopus 로고    scopus 로고
    • ASME Boiler and Pressure Vessel Code, 2004 ed., Section III, Division 1, Subsection NH, The American Society of Mechanical Engineers New York, New York, USA.
  • 2
    • 85162610027 scopus 로고    scopus 로고
    • RCC MR Design Code, 2002 ed., section 1, sub section Z, French Society for Design and Construction Rules for Nuclear Island Components.
  • 3
    • 85162596792 scopus 로고    scopus 로고
    • R5, Assessment procedure for the high temperature response of structures issue 3, British Energy, Gloucester, UK, 2003.
  • 12
    • 0003768239 scopus 로고
    • McCord Nelson M., and Illingworth W.T. (Eds), Addison-Wesley Publishing Company Inc., Seoul
    • In: McCord Nelson M., and Illingworth W.T. (Eds). A Practical Guide to Neural Nets (1992), Addison-Wesley Publishing Company Inc., Seoul
    • (1992) A Practical Guide to Neural Nets
  • 18
    • 85162586428 scopus 로고    scopus 로고
    • NRIM Fatigue Data Sheet No. 15, National Institute for Materials Science, Tsukuba, Japan, 1979.
  • 19
    • 85162598784 scopus 로고    scopus 로고
    • Al Trilogy, Ward Systems Group, Inc., USA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.