-
2
-
-
85036169504
-
-
Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer-Verlag, Berlin, 1996)
-
Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer-Verlag, Berlin, 1996).
-
-
-
-
3
-
-
85036194015
-
-
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Springer-Verlag, Berlin, 1996)
-
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Springer-Verlag, Berlin, 1996).
-
-
-
-
4
-
-
85036215242
-
-
S. Havlin and A. Bunde in Contemporary Problems in Statistical Physics, edited by G. H. Weiss (SIAM, Philadelphia, 1994) pp. 103–146
-
S. Havlin and A. Bunde in Contemporary Problems in Statistical Physics, edited by G. H. Weiss (SIAM, Philadelphia, 1994) pp. 103–146.
-
-
-
-
6
-
-
85036214670
-
-
B. H. Hughes, Random Walks and Random Environments, (Clarendon Press, Oxford, 1995), Vol. 1;, Random Walks and Random Environments (Clarendon Press, Oxford, 1996), Vol. 2
-
B. H. Hughes, Random Walks and Random Environments, (Clarendon Press, Oxford, 1995), Vol. 1;Random Walks and Random Environments (Clarendon Press, Oxford, 1996), Vol. 2.
-
-
-
-
7
-
-
85036348995
-
-
G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994)
-
G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994).
-
-
-
-
8
-
-
5544238556
-
-
H. Larralde, P. Trunfio, S. Havlin, H.E. Stanley, and G.H. Weiss, Nature (London) 355, 423 (1992);
-
(1992)
Nature (London)
, vol.355
, pp. 423
-
-
Larralde, H.1
Trunfio, P.2
Havlin, S.3
Stanley, H.E.4
Weiss, G.H.5
-
11
-
-
0010479678
-
-
S. Havlin, H. Larralde, P. Trunfio, J.E. Kiefer, H.E. Stanley, and G.H. Weiss, Phys. Rev. A 46, R1717 (1992).
-
(1992)
Phys. Rev. A
, vol.46
-
-
Havlin, S.1
Larralde, H.2
Trunfio, P.3
Kiefer, J.E.4
Stanley, H.E.5
Weiss, G.H.6
-
15
-
-
0035510264
-
-
Phys. Rev. ES.B. YusteL. Acedo64, 052102 (2001).
-
(2001)
, vol.64
, pp. 52102
-
-
Yuste, S.B.1
Acedo, L.2
-
28
-
-
85036298649
-
-
Recent advances in optical spectroscopy [see T. Bache, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, 1996)
-
Recent advances in optical spectroscopy [see T. Bache, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, 1996);
-
-
-
-
30
-
-
85035255476
-
-
X.S. XieJ.K. Trautmanor the section “Single Molecules” in Science 283, 1667 (1999)] make it possible to monitor this kind of multiparticle dynamic process. In fact, the simultaneous and individual tracking of (Formula presented) fluorescently labeled diffusing particles is a useful recent technique for characterizing heterogeneous microenvironments;
-
(1999)
Science
, vol.283
, pp. 1667
-
-
Xie, X.S.1
Trautman, J.K.2
-
31
-
-
45849154617
-
-
see M.T. Valentine, P.D. Kaplan, D. Thota, J.C. Crocker, T. Gisler, R.K. Prud’homme, M. Beck, and D.A. Weitz, Phys. Rev. E 64, 061506 (2001).
-
(2001)
Phys. Rev. E
, vol.64
, pp. 61506
-
-
Valentine, M.T.1
Kaplan, P.D.2
Thota, D.3
Crocker, J.C.4
Gisler, T.5
Prud’homme, R.K.6
Beck, M.7
Weitz, D.A.8
-
32
-
-
85036255666
-
-
For Euclidean media, the survival probability can be found by solving the diffusion equation with an absorbing spherical boundary placed at the Euclidean distance r. For the class of deterministic fractal media discussed in Ref. 14, the survival probability is found by renormalization techniques
-
For Euclidean media, the survival probability can be found by solving the diffusion equation with an absorbing spherical boundary placed at the Euclidean distance r. For the class of deterministic fractal media discussed in Ref. 14, the survival probability is found by renormalization techniques.
-
-
-
-
33
-
-
85036314366
-
-
A key fact that supported the conjecture was that the asymptotic relation for (Formula presented) obtained in Ref. 9 for disordered fractals can also be reobtained from Eq. (1). However, it was found later 12 18 that that relation for (Formula presented) is not valid for disordered fractals
-
A key fact that supported the conjecture was that the asymptotic relation for (Formula presented) obtained in Ref. 9 for disordered fractals can also be reobtained from Eq. (1). However, it was found later 1218 that that relation for (Formula presented) is not valid for disordered fractals.
-
-
-
-
38
-
-
0001460839
-
-
I. Majid, D. Ben-Avraham, S. Havlin, and H.E. Stanley, Phys. Rev. B 30, 1626 (1984).
-
(1984)
Phys. Rev. B
, vol.30
, pp. 1626
-
-
Majid, I.1
Ben-Avraham, D.2
Havlin, S.3
Stanley, H.E.4
-
39
-
-
85036374793
-
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1972)
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1972).
-
-
-
-
41
-
-
36149036329
-
-
J. Phys. AM. Giona and H.E. Roman, 25, 2093 (1992);
-
(1992)
, vol.25
, pp. 2093
-
-
Giona, M.1
Roman, H.E.2
-
42
-
-
0000117917
-
-
J. Phys. AH.E. Roman and M. Giona, 25, 2107 (1992);
-
(1992)
, vol.25
, pp. 2107
-
-
Roman, H.E.1
Giona, M.2
-
46
-
-
0000620188
-
-
T. F. Nonnenmacher, in Fractional Calculus in Physics, edited by R. Hilfer (World Scientific, Singapore, 2000)
-
U. Mosco, Phys. Rev. Lett. 79, 4067 (1997);T. F. Nonnenmacher, in Fractional Calculus in Physics, edited by R. Hilfer (World Scientific, Singapore, 2000).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 4067
-
-
Mosco, U.1
|