-
1
-
-
0003208638
-
Poincaré-Steklov's operators and domain decomposition methods infinite dimensional spaces
-
Equations I, R. Glowinski, et. al, eds, SIAM, Philadelphia, PA
-
V. I. AGOSHKOW, Poincaré-Steklov's operators and domain decomposition methods infinite dimensional spaces., in Domain Decomposition Methods for Partial Differential Equations I, R. Glowinski, et. al., eds., SIAM, Philadelphia, PA, 1988, pp. 73-112.
-
(1988)
Domain Decomposition Methods for Partial Differential
, pp. 73-112
-
-
AGOSHKOW, V.I.1
-
2
-
-
1842563883
-
On optimal finite-difference approximation of PML
-
S. ASVADUROV, V. DRUSKIN, M. N. GUDDATI, AND L. KNIZHNERMAN, On optimal finite-difference approximation of PML., SIAM J. Numer. Anal., 41 (2003), pp. 287-305.
-
(2003)
SIAM J. Numer. Anal
, vol.41
, pp. 287-305
-
-
ASVADUROV, S.1
DRUSKIN, V.2
GUDDATI, M.N.3
KNIZHNERMAN, L.4
-
3
-
-
0001581299
-
Application of the difference Gaussian rules to the solution of hyperbolic problems
-
S. ASVADUROV, V. DRUSKIN, L. KNIZHNERMAN, Application of the difference Gaussian rules to the solution of hyperbolic problems., J. Comput. Phys., 158 (2000), pp. 116-135.
-
(2000)
J. Comput. Phys
, vol.158
, pp. 116-135
-
-
ASVADUROV, S.1
DRUSKIN, V.2
KNIZHNERMAN, L.3
-
4
-
-
0036156457
-
Application of the difference Gaussian rules to the solution of hyperbolic problems. II. Global Expansion
-
S. ASVADUROV, V. DRUSKIN, L. KNIZHNERMAN, Application of the difference Gaussian rules to the solution of hyperbolic problems. II. Global Expansion., J. Comput. Phys., 175 (2002), pp. 24-49.
-
(2002)
J. Comput. Phys
, vol.175
, pp. 24-49
-
-
ASVADUROV, S.1
DRUSKIN, V.2
KNIZHNERMAN, L.3
-
6
-
-
0036684748
-
Optimal finite difference grids for direct and inverse Sturm-Liouville problems
-
L. BORCEA AND V. DRUSKIN, Optimal finite difference grids for direct and inverse Sturm-Liouville problems., Inverse Problems, (2002), pp. 979-1001.
-
(2002)
Inverse Problems
, pp. 979-1001
-
-
BORCEA, L.1
DRUSKIN, V.2
-
7
-
-
0242578236
-
An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media
-
S. DAVYDYCHEVA, V. DRUSKIN, AND T. M. HABASHY, An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media, Geophysics, 68 (2003), pp. 1525-1536.
-
(2003)
Geophysics
, vol.68
, pp. 1525-1536
-
-
DAVYDYCHEVA, S.1
DRUSKIN, V.2
HABASHY, T.M.3
-
8
-
-
0000252706
-
Gaussian spectral rules for three-point second differences. I. A two-point positive definite problem in a semi-infinite domain
-
V. DRUSKIN AND L. KNIZHNERMAN, Gaussian spectral rules for three-point second differences. I. A two-point positive definite problem in a semi-infinite domain., SIAM J. Numer. Anal., 37 (2000), pp. 403-422.
-
(2000)
SIAM J. Numer. Anal
, vol.37
, pp. 403-422
-
-
DRUSKIN, V.1
KNIZHNERMAN, L.2
-
9
-
-
0000279344
-
Gaussian spectral rules for second order finite-difference schemes. Mathematical journey through analysis, matrix theory, and scientific computation
-
V. DRUSKIN AND L. KNIZHNERMAN, Gaussian spectral rules for second order finite-difference schemes. Mathematical journey through analysis, matrix theory, and scientific computation., Numer. Algorithms, 25 (2000), pp. 139-159.
-
(2000)
Numer. Algorithms
, vol.25
, pp. 139-159
-
-
DRUSKIN, V.1
KNIZHNERMAN, L.2
-
10
-
-
0036333641
-
Three-point finite difference schemes, Podé and the spectral Galerkin method. I. One-sided impedance approximation
-
V. DRUSKIN AND S. MOSKOW, Three-point finite difference schemes, Podé and the spectral Galerkin method. I. One-sided impedance approximation., Math. Comp., 71 (2002), pp. 995-1019.
-
(2002)
Math. Comp
, vol.71
, pp. 995-1019
-
-
DRUSKIN, V.1
MOSKOW, S.2
-
11
-
-
84980151986
-
Radiation boundary conditions for acoustic and elastic wave calculations
-
B. ENGQUIST AND A. MAJDA, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), pp. 313-357.
-
(1979)
Comm. Pure Appl. Math
, vol.32
, pp. 313-357
-
-
ENGQUIST, B.1
MAJDA, A.2
-
12
-
-
0037246084
-
Optimized Schwarz methods without overlap for the Helmholtz equation
-
M. J. GANDER, F. MAGOULES, AND F. NATAF, Optimized Schwarz methods without overlap for the Helmholtz equation., SIAM J. Sci. Comput., 24 (2002), pp. 38-60.
-
(2002)
SIAM J. Sci. Comput
, vol.24
, pp. 38-60
-
-
GANDER, M.J.1
MAGOULES, F.2
NATAF, F.3
-
13
-
-
37649017122
-
DtN schemes for nonlinear problems in unbounded domains
-
Centro Internac. Mtodos Numr. Ing, Barcelona
-
D. GIVOLI, I. PATLASHENKO, AND J. B. KELLER, DtN schemes for nonlinear problems in unbounded domains, in Computational mechanics (Buenos Aires, 1998), CD-ROM file, Centro Internac. Mtodos Numr. Ing., Barcelona, 1998.
-
(1998)
Computational mechanics (Buenos Aires, 1998), CD-ROM file
-
-
GIVOLI, D.1
PATLASHENKO, I.2
KELLER, J.B.3
-
14
-
-
0034408940
-
Optimal finite difference grids and rational approximation of the square root. I. Elliptic problems
-
D. INOERMAN, V. DRUSKIN, AND L. KNIZHNERMAN, Optimal finite difference grids and rational approximation of the square root. I. Elliptic problems., Comm. Pure Appl. Math., 53 (2000), pp. 1039-1066.
-
(2000)
Comm. Pure Appl. Math
, vol.53
, pp. 1039-1066
-
-
INOERMAN, D.1
DRUSKIN, V.2
KNIZHNERMAN, L.3
-
15
-
-
0034345543
-
Continued-fraction absorbing boundary conditions for the wave equation
-
M. GUDDATI AND J. TASSOULAS Continued-fraction absorbing boundary conditions for the wave equation, J. Comp. Acoust., 8 (2000), pp. 139-156.
-
(2000)
J. Comp. Acoust
, vol.8
, pp. 139-156
-
-
GUDDATI, M.1
TASSOULAS, J.2
-
17
-
-
0008157573
-
A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces
-
S. MOSKOW, V. DRUSKIN, T. HABASHY, P. LEE, AND S. DAVYDYCHEVA, A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces., SIAM J. Numer. Anal., 36 (1999), pp. 442-464.
-
(1999)
SIAM J. Numer. Anal
, vol.36
, pp. 442-464
-
-
MOSKOW, S.1
DRUSKIN, V.2
HABASHY, T.3
LEE, P.4
DAVYDYCHEVA, S.5
-
18
-
-
0009481914
-
Theory and application of Steklov-Poincaré operators for boundary value problems
-
R. Spigler ed, Kluwer, Dordrecht
-
A. QUARTERONI AND A. VALLI, Theory and application of Steklov-Poincaré operators for boundary value problems., in Applied and Industrial Mathematics, R. Spigler ed., Kluwer, Dordrecht, 1991, pp. 179-203.
-
(1991)
Applied and Industrial Mathematics
, pp. 179-203
-
-
QUARTERONI, A.1
VALLI, A.2
-
19
-
-
0000750874
-
The Dirichlet to Neumann map and applications
-
Arcata, CA, SIAM, Philadelphia, PA
-
J. SYLVESTER AND G. UHLMANN The Dirichlet to Neumann map and applications., in Inverse Problems in Partial Differential Equations, (Arcata, CA, 1989), SIAM, Philadelphia, PA, 1990, pp. 101-139.
-
(1989)
Inverse Problems in Partial Differential Equations
, pp. 101-139
-
-
SYLVESTER, J.1
UHLMANN, G.2
|