메뉴 건너뛰기




Volumn 60, Issue 2, 2007, Pages 237-258

Superposition rules, lie theorem, and partial differential equations

Author keywords

differential equation; foliation; Lie algebra; Lie systems; nonlinear superposition; time dependent system; vector field

Indexed keywords


EID: 37649009996     PISSN: 00344877     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0034-4877(07)80137-6     Document Type: Article
Times cited : (96)

References (24)
  • 1
    • 0041012471 scopus 로고
    • Group theoretical approach to superposition systems of Riccati equations
    • Anderson R.L., Harnad J., and Winternitz P. Group theoretical approach to superposition systems of Riccati equations. Lett. in Math. Phys 5 (1981) 143-148
    • (1981) Lett. in Math. Phys , vol.5 , pp. 143-148
    • Anderson, R.L.1    Harnad, J.2    Winternitz, P.3
  • 2
    • 0035949232 scopus 로고    scopus 로고
    • Group theoretical approach to the intertwined Hamiltonians
    • Cariñena J.F., Fernéndez D.J., and Ramos A. Group theoretical approach to the intertwined Hamiltonians. Ann. Phys. (N.Y.) 292 (2001) 42-66
    • (2001) Ann. Phys. (N.Y.) , vol.292 , pp. 42-66
    • Cariñena, J.F.1    Fernéndez, D.J.2    Ramos, A.3
  • 4
    • 0006397566 scopus 로고    scopus 로고
    • Some applications in physics of differential equation systems admitting a superposition rule
    • Cariñena J.F., Grabowski J., and Marmo G. Some applications in physics of differential equation systems admitting a superposition rule. Rep. Math. Phys 48 (2001) 47-58
    • (2001) Rep. Math. Phys , vol.48 , pp. 47-58
    • Cariñena, J.F.1    Grabowski, J.2    Marmo, G.3
  • 5
    • 0038368578 scopus 로고    scopus 로고
    • Reduction of time-dependent systems admitting a superposition principle
    • Cariñena J.F., Grabowski J., and Ramos A. Reduction of time-dependent systems admitting a superposition principle. Acta Appl. Math 66 (2001) 67-87
    • (2001) Acta Appl. Math , vol.66 , pp. 67-87
    • Cariñena, J.F.1    Grabowski, J.2    Ramos, A.3
  • 6
    • 0000711029 scopus 로고    scopus 로고
    • The nonlinear superposition principle and the Wei-Norman method
    • Cariñena J.F., Marmo G., and Nasarre J. The nonlinear superposition principle and the Wei-Norman method. Int. J. Mod. Phys. A 13 (1998) 3601-3627
    • (1998) Int. J. Mod. Phys. A , vol.13 , pp. 3601-3627
    • Cariñena, J.F.1    Marmo, G.2    Nasarre, J.3
  • 7
    • 0001241975 scopus 로고    scopus 로고
    • Integrability of the Riccati equation from a group theoretical viewpoint
    • Cariñena J.F., and Ramos A. Integrability of the Riccati equation from a group theoretical viewpoint. Int. J. Mod. Phys. A 14 (1999) 1935-1951
    • (1999) Int. J. Mod. Phys. A , vol.14 , pp. 1935-1951
    • Cariñena, J.F.1    Ramos, A.2
  • 9
    • 0036128374 scopus 로고    scopus 로고
    • A new geometric approach to Lie systems and physical applications
    • Cariñena J.F., and Ramos A. A new geometric approach to Lie systems and physical applications. Acta Appl. Math 70 (2002) 43-69
    • (2002) Acta Appl. Math , vol.70 , pp. 43-69
    • Cariñena, J.F.1    Ramos, A.2
  • 10
    • 37649021412 scopus 로고    scopus 로고
    • Lie Systems and Connections in Fibre Bundles: Applications in Quantum Mechanics
    • Bures J., et al. (Ed), Matfyzpress, Praga 2005
    • Cariñena J.F., and Ramos A. Lie Systems and Connections in Fibre Bundles: Applications in Quantum Mechanics. In: Bures J., et al. (Ed). 9th Int. Conf. Diff. Geom. and Appl. (2004), Matfyzpress, Praga 437-452 2005
    • (2004) 9th Int. Conf. Diff. Geom. and Appl. , pp. 437-452
    • Cariñena, J.F.1    Ramos, A.2
  • 11
    • 36749113210 scopus 로고
    • Superposition principles for matrix Riccati equations
    • Hamad J., Winternitz P., and Anderson R.L. Superposition principles for matrix Riccati equations. J. Math. Phys 24 (1983) 1062-1072
    • (1983) J. Math. Phys , vol.24 , pp. 1062-1072
    • Hamad, J.1    Winternitz, P.2    Anderson, R.L.3
  • 12
    • 84956137383 scopus 로고
    • Group analysis of ordinary differential equations and the invariance principle in mathematical physics
    • Ibragimov N.H. Group analysis of ordinary differential equations and the invariance principle in mathematical physics. Russ. Math. Surveys 47 (1992) 89-156
    • (1992) Russ. Math. Surveys , vol.47 , pp. 89-156
    • Ibragimov, N.H.1
  • 15
    • 0014742394 scopus 로고
    • Noncommutative Superpositions for Nonlinear Operators
    • Inselberg A. Noncommutative Superpositions for Nonlinear Operators. J. Math. Anal. Appl 29 (1970) 294-298
    • (1970) J. Math. Anal. Appl , vol.29 , pp. 294-298
    • Inselberg, A.1
  • 17
    • 0001025699 scopus 로고
    • Principles of nonlinear superposition
    • Levin S.A. Principles of nonlinear superposition. J. Math. Anal Appl 30 (1970) 197-205
    • (1970) J. Math. Anal Appl , vol.30 , pp. 197-205
    • Levin, S.A.1
  • 19
    • 0034165340 scopus 로고    scopus 로고
    • Superposition principle for the Lie-type first order PDEs
    • Odzijewicz A., and Grundland A.M. Superposition principle for the Lie-type first order PDEs. Rep. Math. Phys 45 (2000) 293-305
    • (2000) Rep. Math. Phys , vol.45 , pp. 293-305
    • Odzijewicz, A.1    Grundland, A.M.2
  • 20
    • 0000456714 scopus 로고    scopus 로고
    • S. Shnider and P. Winternitz: Classification of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys. 25, 3155-65.
  • 22
    • 0007347727 scopus 로고
    • Lie algebraic solution of linear differential equations
    • Wei J., and Norman E. Lie algebraic solution of linear differential equations. J. Math. Phys 4 (1963) 575-581
    • (1963) J. Math. Phys , vol.4 , pp. 575-581
    • Wei, J.1    Norman, E.2
  • 23
    • 84966255507 scopus 로고
    • On global representations of the solutions of linear differential equations as a product of exponentials
    • Wei J., and Norman E. On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc 15 (1964) 327-334
    • (1964) Proc. Amer. Math. Soc , vol.15 , pp. 327-334
    • Wei, J.1    Norman, E.2
  • 24
    • 0003229409 scopus 로고
    • Lie groups and solutions of nonlinear differential equations
    • Wolf K.B. (Ed), Lecture Notes in Physics 189, Springer, N.Y.
    • Winternitz P. Lie groups and solutions of nonlinear differential equations. In: Wolf K.B. (Ed). Nonlinear Phenomena (1983), Lecture Notes in Physics 189, Springer, N.Y.
    • (1983) Nonlinear Phenomena
    • Winternitz, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.