-
2
-
-
0037236745
-
On the design of active contours for medical image segmentation: a scheme for classification and construction
-
Lehmann T.M., Bredno J., and Spitzer K. On the design of active contours for medical image segmentation: a scheme for classification and construction. Methods Inf. Med. 42 1 (2003) 89-98
-
(2003)
Methods Inf. Med.
, vol.42
, Issue.1
, pp. 89-98
-
-
Lehmann, T.M.1
Bredno, J.2
Spitzer, K.3
-
4
-
-
10244264665
-
Mutual information in coupled multi-shape model for medical image segmentation
-
Tsai A., Wells W., Tempany C., Grimson E., and Willsky A. Mutual information in coupled multi-shape model for medical image segmentation. Med. Image Anal. 8 4 (2004) 429-445
-
(2004)
Med. Image Anal.
, vol.8
, Issue.4
, pp. 429-445
-
-
Tsai, A.1
Wells, W.2
Tempany, C.3
Grimson, E.4
Willsky, A.5
-
5
-
-
0036688766
-
Active shape model segmentation with optimal features
-
Van Ginneken B., Frangi A.F., Staal J.J., Ter Haar Romeny B.M., and Viergever M.A. Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21 8 (2002) 924-933
-
(2002)
IEEE Trans. Med. Imaging
, vol.21
, Issue.8
, pp. 924-933
-
-
Van Ginneken, B.1
Frangi, A.F.2
Staal, J.J.3
Ter Haar Romeny, B.M.4
Viergever, M.A.5
-
6
-
-
19044388414
-
Model-based segmentation of medical imagery by matching distributions
-
Freedman D., Radke R.J., Zhang T., Jeong Y., Lovelock D.M., and Chen G.T.Y. Model-based segmentation of medical imagery by matching distributions. IEEE Trans. Med. Imaging 24 3 (2005) 281-292
-
(2005)
IEEE Trans. Med. Imaging
, vol.24
, Issue.3
, pp. 281-292
-
-
Freedman, D.1
Radke, R.J.2
Zhang, T.3
Jeong, Y.4
Lovelock, D.M.5
Chen, G.T.Y.6
-
7
-
-
0026172104
-
Watersheds in digital spaces: an efficient algorithm based on immersion simulations
-
Vincent L., and Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13 6 (1991) 583-598
-
(1991)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.13
, Issue.6
, pp. 583-598
-
-
Vincent, L.1
Soille, P.2
-
8
-
-
0000950331
-
The watershed transform: definitions, algorithms and parallelization strategies
-
Roerdink J.B.T.M., and Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Informaticae 41 (2000) 187-228
-
(2000)
Fundam. Informaticae
, vol.41
, pp. 187-228
-
-
Roerdink, J.B.T.M.1
Meijster, A.2
-
9
-
-
27144510108
-
Case study: an evaluation of user-assisted hierarchical watershed segmentation
-
Cates J.E., Whitaker R.T., and Jones G.M. Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med. Image Anal. 9 6 (2005) 566-578
-
(2005)
Med. Image Anal.
, vol.9
, Issue.6
, pp. 566-578
-
-
Cates, J.E.1
Whitaker, R.T.2
Jones, G.M.3
-
11
-
-
23944502816
-
A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method
-
Rodriguez R., Alarcon T.E., and Pacheco O. A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method. Comput. Biol. Med. 35 8 (2005) 665-686
-
(2005)
Comput. Biol. Med.
, vol.35
, Issue.8
, pp. 665-686
-
-
Rodriguez, R.1
Alarcon, T.E.2
Pacheco, O.3
-
12
-
-
1942486776
-
Improved watershed transform for medical image segmentation using prior information
-
Grau V., Mewes A.U.J., Alcaniz M., Kikinis R., and Warfield S.K. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23 4 (2004) 447-458
-
(2004)
IEEE Trans. Med. Imaging
, vol.23
, Issue.4
, pp. 447-458
-
-
Grau, V.1
Mewes, A.U.J.2
Alcaniz, M.3
Kikinis, R.4
Warfield, S.K.5
-
13
-
-
0033181293
-
Adaptive fuzzy segmentation of magnetic resonance images
-
Pham D.L., and Prince J.L. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18 9 (1999) 737-752
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, Issue.9
, pp. 737-752
-
-
Pham, D.L.1
Prince, J.L.2
-
14
-
-
0036489378
-
A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
-
Ahmed M.N., and Yamany S.M. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21 3 (2002) 193-199
-
(2002)
IEEE Trans. Med. Imaging
, vol.21
, Issue.3
, pp. 193-199
-
-
Ahmed, M.N.1
Yamany, S.M.2
-
15
-
-
25844489923
-
MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
-
Shen S., Sandham W., Granat M., and Sterr A. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inf. Technol. Biomed. 9 3 (2005) 459-467
-
(2005)
IEEE Trans. Inf. Technol. Biomed.
, vol.9
, Issue.3
, pp. 459-467
-
-
Shen, S.1
Sandham, W.2
Granat, M.3
Sterr, A.4
-
16
-
-
0027275316
-
Review of MR image segmentation techniques using pattern recognition
-
Bezdek J.C., Hall L.O., and Clarke L.P. Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20 4 (1993) 1033-1048
-
(1993)
Med. Phys.
, vol.20
, Issue.4
, pp. 1033-1048
-
-
Bezdek, J.C.1
Hall, L.O.2
Clarke, L.P.3
-
17
-
-
0036647190
-
An efficient K-means clustering algorithm: analysis and implementation
-
Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R., and Wu A.Y. An efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24 7 (2002) 881-892
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.7
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
18
-
-
33144460268
-
A genetic algorithm using hyper-quadtrees for low-dimensional K-means clustering
-
Laszio M., and Mukherjee S. A genetic algorithm using hyper-quadtrees for low-dimensional K-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28 4 (2006) 533-543
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.4
, pp. 533-543
-
-
Laszio, M.1
Mukherjee, S.2
-
19
-
-
0032287848
-
Image segmentation via adaptive K-mean clustering and knowledge based morphological operations with biomedical applications
-
Chen C.W., Luo J., and Parker K.J. Image segmentation via adaptive K-mean clustering and knowledge based morphological operations with biomedical applications. IEEE Trans. Image Process. 7 12 (1998) 1673-1683
-
(1998)
IEEE Trans. Image Process.
, vol.7
, Issue.12
, pp. 1673-1683
-
-
Chen, C.W.1
Luo, J.2
Parker, K.J.3
-
20
-
-
0032028944
-
Snakes, shapes, and gradient vector flow
-
Xu C., and Prince J.L. Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7 (1998) 359-369
-
(1998)
IEEE Trans. Image Process.
, vol.7
, pp. 359-369
-
-
Xu, C.1
Prince, J.L.2
-
22
-
-
0033201366
-
Automated model-based tissue classification of MR images of the brain
-
Leemput V.K., Maes F., Vandermeulen D., and Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18 10 (1999) 897-908
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, Issue.10
, pp. 897-908
-
-
Leemput, V.K.1
Maes, F.2
Vandermeulen, D.3
Suetens, P.4
-
23
-
-
10044257523
-
Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence
-
Chung A.C.S. Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence. IEEE Trans. Med. Imaging 23 12 (2004) 1490-1507
-
(2004)
IEEE Trans. Med. Imaging
, vol.23
, Issue.12
, pp. 1490-1507
-
-
Chung, A.C.S.1
-
24
-
-
28744448584
-
Cerebrovascular segmentation from TOF using stochastic models
-
Hassouna M.S., Farag A.A., Hushek S., and Moriarty T. Cerebrovascular segmentation from TOF using stochastic models. Med. Image Anal. 10 1 (2006) 2-18
-
(2006)
Med. Image Anal.
, vol.10
, Issue.1
, pp. 2-18
-
-
Hassouna, M.S.1
Farag, A.A.2
Hushek, S.3
Moriarty, T.4
-
25
-
-
28644446492
-
Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA image
-
Kim D.Y., and Park J.W. Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA image. Image and Vision Comput. 23 14 (2005) 1277-1287
-
(2005)
Image and Vision Comput.
, vol.23
, Issue.14
, pp. 1277-1287
-
-
Kim, D.Y.1
Park, J.W.2
|