메뉴 건너뛰기




Volumn 43, Issue 5, 2008, Pages 849-860

Shear strength estimation of plastic clays with statistical and neural approaches

Author keywords

[No Author keywords available]

Indexed keywords

BEARING CAPACITY; CONSOLIDATION; NEURAL NETWORKS; SHEAR STRENGTH; STATISTICAL METHODS;

EID: 37549058421     PISSN: 03601323     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.buildenv.2007.01.022     Document Type: Article
Times cited : (33)

References (27)
  • 2
    • 0025492042 scopus 로고
    • Multiple regression analysis between the mechanical and physical properties of cohesive soils
    • Hirata S., Yao S., and Nishida K. Multiple regression analysis between the mechanical and physical properties of cohesive soils. Soils and Foundations 30 (1990) 91-108
    • (1990) Soils and Foundations , vol.30 , pp. 91-108
    • Hirata, S.1    Yao, S.2    Nishida, K.3
  • 3
    • 0033323499 scopus 로고    scopus 로고
    • Shear strength of unsaturated soils
    • Miao L., and Yin Z. Shear strength of unsaturated soils. Rock and Soil Mechanics 20 (1999) 1-6
    • (1999) Rock and Soil Mechanics , vol.20 , pp. 1-6
    • Miao, L.1    Yin, Z.2
  • 4
    • 0030157748 scopus 로고    scopus 로고
    • Relationship of the unsaturated soil shear strength to the soil-water characteristic curve
    • Fredlund D.G., Xing A., Fredlund M.D., and Barbour S.L. Relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal 33 (1996) 440-448
    • (1996) Canadian Geotechnical Journal , vol.33 , pp. 440-448
    • Fredlund, D.G.1    Xing, A.2    Fredlund, M.D.3    Barbour, S.L.4
  • 5
    • 0032130999 scopus 로고    scopus 로고
    • Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests
    • Tutumluer E., and Seyhan U. Neural network modeling of anisotropic aggregate behavior from repeated load triaxial tests. Transportation Research Record 1615 (1998) 86-93
    • (1998) Transportation Research Record , vol.1615 , pp. 86-93
    • Tutumluer, E.1    Seyhan, U.2
  • 6
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi G., and Bamdad A. A neural network framework for mechanical behavior of unsaturated soils. Canadian Geotechnical Journal 40 (2003) 684-693
    • (2003) Canadian Geotechnical Journal , vol.40 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 7
    • 0026711890 scopus 로고    scopus 로고
    • Ellis GW, Chengwan Y, Rongda Z. Neural network modeling of the mechanical behavior of sand. In: Proceedings of the ninth conference on engineering mechanics, USA, 1992. p. 421-4.
  • 9
    • 0030679134 scopus 로고    scopus 로고
    • Penumadu D, Chameau J. Geomaterial modeling using artificial neural networks. Artificial Neural Networks for Civil Engineers: Fundamentals and Application: ASCE 1997; p. 160-84.
  • 10
    • 58749093608 scopus 로고    scopus 로고
    • Penumadu D, Rongda Z. Modeling drained triaxial compression behavior of sand using ANN. GeoDenver 2000: Numerical Methods in Geotechnical Engineering USA. 2000; 71-87.
  • 11
    • 0037490974 scopus 로고    scopus 로고
    • An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation
    • Lee S.J., Lee S.R., and Kim Y.S. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Computers and Geotechnics 30 (2003) 489-503
    • (2003) Computers and Geotechnics , vol.30 , pp. 489-503
    • Lee, S.J.1    Lee, S.R.2    Kim, Y.S.3
  • 12
    • 0031917757 scopus 로고    scopus 로고
    • New nested adaptive neural networks for constitutive modeling
    • Ghaboussi J., and Sidarta D.E. New nested adaptive neural networks for constitutive modeling. Computers and Geotechnics 122 (1998) 29-52
    • (1998) Computers and Geotechnics , vol.122 , pp. 29-52
    • Ghaboussi, J.1    Sidarta, D.E.2
  • 14
    • 0030369601 scopus 로고    scopus 로고
    • Strength characteristics modeling of lateritic soils using adaptive neural networks
    • Attoh-Okine N.O., and Fekpe E.S.K. Strength characteristics modeling of lateritic soils using adaptive neural networks. Construction and Building Materials 10 (1996) 577-582
    • (1996) Construction and Building Materials , vol.10 , pp. 577-582
    • Attoh-Okine, N.O.1    Fekpe, E.S.K.2
  • 16
    • 1942471648 scopus 로고    scopus 로고
    • Alshibli KA, Alsaleh MI, Godbold DL, Macari EJ. Numerical and experimental study of strength properties of Martian regolith. Engineering construction and operations in challenging environments earth and space. In: Proceedings of the ninth biennial ASCE aerospace division international conference, 2004. p. 1-8.
  • 17
    • 37549007179 scopus 로고    scopus 로고
    • ASTM D4767-02. Standard test method for consolidated undrained triaxial compression test for cohesive soils.
  • 18
    • 37549027214 scopus 로고    scopus 로고
    • ASTM D4318-00. Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
  • 19
    • 0004063090 scopus 로고    scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Haykin S. Neural networks (1999), Prentice-Hall, Englewood Cliffs, NJ
    • (1999) Neural networks
    • Haykin, S.1
  • 21
    • 37549006784 scopus 로고    scopus 로고
    • Widrow B, Hoff ME. Adaptive switching circuits. 1960 IRE WESCON convention record. New York, 1960. p. 96-10.
  • 23
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks 1 (1988) 295-307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 24
    • 0001024110 scopus 로고
    • First and second order methods for learning: between steepest descent and Newton's method
    • Battiti R. First and second order methods for learning: between steepest descent and Newton's method. Neural Computation 4 (1992) 141-166
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 25
    • 84943274699 scopus 로고    scopus 로고
    • Reidmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks. New York, USA, 1993. p. 586-91.
  • 26
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M. Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 (1994) 989-993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.