-
1
-
-
37549011209
-
-
In partial fulfilment of the requirements for the Ph.D. degree in Chemical Sciences, University of Bologna
-
In partial fulfilment of the requirements for the Ph.D. degree in Chemical Sciences, University of Bologna.
-
-
-
-
3
-
-
17444369440
-
-
(b) Lunazzi, L.; Mazzanti, A.; Minzoni, M.; Anderson, J. E. Org. Lett. 2005, 7, 1291-1294.
-
(2005)
Org. Lett
, vol.7
, pp. 1291-1294
-
-
Lunazzi, L.1
Mazzanti, A.2
Minzoni, M.3
Anderson, J.E.4
-
4
-
-
33746324568
-
-
(c) Mazzanti, A.; Lunazzi, L.; Minzoni, M.; Anderson, J. E. J. Org. Chem. 2006, 71, 5474-5481.
-
(2006)
J. Org. Chem
, vol.71
, pp. 5474-5481
-
-
Mazzanti, A.1
Lunazzi, L.2
Minzoni, M.3
Anderson, J.E.4
-
6
-
-
0011475687
-
-
(b) Cozzi, F.; Cinquini, M.; Annunziata, R.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 5330-5331.
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 5330-5331
-
-
Cozzi, F.1
Cinquini, M.2
Annunziata, R.3
Siegel, J.S.4
-
7
-
-
33748212084
-
-
(c) Cozzi, F.; Ponzini, F.; Annunziata, R.; Cinquini, M.; Siegel, J. S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1019-1020.
-
(1995)
Angew. Chem., Int. Ed. Engl
, vol.34
, pp. 1019-1020
-
-
Cozzi, F.1
Ponzini, F.2
Annunziata, R.3
Cinquini, M.4
Siegel, J.S.5
-
8
-
-
0029894022
-
-
(d) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M. F. Tetrahedron 1996, 52, 8703-8706.
-
(1996)
Tetrahedron
, vol.52
, pp. 8703-8706
-
-
Zoltewicz, J.A.1
Maier, N.M.2
Fabian, W.M.F.3
-
9
-
-
0001396363
-
-
(e) Zoltewicz, J. A.; Maier, N. M.; Fabian, W. M. F. J. Org. Chem. 1996, 61, 7018-7021.
-
(1996)
J. Org. Chem
, vol.61
, pp. 7018-7021
-
-
Zoltewicz, J.A.1
Maier, N.M.2
Fabian, W.M.F.3
-
10
-
-
0036025628
-
-
(f) Thirsk, C.; Hawkes, G. E.; Kroemer, R. T.; Liedl, K. R.; Loerting, T.; Nasser, R.; Pritchard, R. G.; Steele, M.; Warren, J. E.; Whiting, A. J. Chem. Soc., Perkin Trans. 2 2002, 1510-1519.
-
(2002)
J. Chem. Soc., Perkin Trans. 2
, pp. 1510-1519
-
-
Thirsk, C.1
Hawkes, G.E.2
Kroemer, R.T.3
Liedl, K.R.4
Loerting, T.5
Nasser, R.6
Pritchard, R.G.7
Steele, M.8
Warren, J.E.9
Whiting, A.10
-
13
-
-
37549002339
-
-
(a) House, H.; Hrabie, J. A.; Van Derveer, D. J. Org. Chem. 1986, 51, 920-929.
-
(1986)
J. Org. Chem
, vol.51
, pp. 920-929
-
-
House, H.1
Hrabie, J.A.2
Van Derveer, D.3
-
14
-
-
0027768754
-
-
(b) House, H.; Holt, J. T.; Van Derveer, D. J. Org. Chem. 1993, 58, 7516-7523.
-
(1993)
J. Org. Chem
, vol.58
, pp. 7516-7523
-
-
House, H.1
Holt, J.T.2
Van Derveer, D.3
-
15
-
-
34447319097
-
-
(c) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72, 5391-5394.
-
(2007)
J. Org. Chem
, vol.72
, pp. 5391-5394
-
-
Lunazzi, L.1
Mancinelli, M.2
Mazzanti, A.3
-
16
-
-
0034743806
-
-
Cross, W.; Hawkes, G. E.; Kroemer, R. T.; Liedl, K. R.; Loerting, T.; Nasser, R.; Pritchard, R. G.; Steele, M.; Watkinson, M.; Whiting, A. J. Chem. Soc., Perkin Trans. 2 2001, 459-467.
-
(2001)
J. Chem. Soc., Perkin Trans. 2
, pp. 459-467
-
-
Cross, W.1
Hawkes, G.E.2
Kroemer, R.T.3
Liedl, K.R.4
Loerting, T.5
Nasser, R.6
Pritchard, R.G.7
Steele, M.8
Watkinson, M.9
Whiting, A.10
-
18
-
-
0008249444
-
-
Anderson, J. E.; Casarini, D.; Lunazzi, L. Tetrahedron Lett. 1988, 29, 3141-3144.
-
(1988)
Tetrahedron Lett
, vol.29
, pp. 3141-3144
-
-
Anderson, J.E.1
Casarini, D.2
Lunazzi, L.3
-
19
-
-
37549062829
-
-
This because the two methyl groups are directed either inward or outward with respect to the naphthalene moiety.3a
-
3a
-
-
-
-
20
-
-
37549069826
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Gammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keit
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Gammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.01; Gaussian Inc.: Pittsburgh, PA, 2004.
-
-
-
-
21
-
-
33847137786
-
-
In a theoretical paper describing compounds analogous to 1, only one of the two possible anti conformers was, inexplicably, considered see: Bigdeli, M. A, Moradi, S, Nemati, F. J. Mol. Struct. THEOCHEM 2007, 807, 125 135
-
In a theoretical paper describing compounds analogous to 1, only one of the two possible anti conformers was, inexplicably, considered (see: Bigdeli, M. A.; Moradi, S.; Nemati, F. J. Mol. Struct. THEOCHEM 2007, 807, 125 135).
-
-
-
-
22
-
-
37549004961
-
-
Greater stability of the anti-syn conformer might be due to the so-called CH-π interactions (see: Nishio, M.; Hirota, M; Umezawa, Y. The CH/π Interaction: Evidence. Nature, and Consequences; Wiley: New York, 1998.) that are possible in the anti-in but not in the anti-out. Also, the anti-out might be destabilized by the H/H repulsion between the methyl groups and the hydrogen protruding from the biphenylene ring, a situation that does not occur in the anti-in conformer.
-
Greater stability of the anti-syn conformer might be due to the so-called CH-π interactions (see: Nishio, M.; Hirota, M; Umezawa, Y. The CH/π Interaction: Evidence. Nature, and Consequences; Wiley: New York, 1998.) that are possible in the anti-in but not in the anti-out. Also, the anti-out might be destabilized by the H/H repulsion between the methyl groups and the hydrogen protruding from the biphenylene ring, a situation that does not occur in the anti-in conformer.
-
-
-
-
23
-
-
37549050366
-
-
In Scheme 2, only one of the two possible transition states for the 180° rotation pathway (steric barrier) was reported (i.e, the one in which the tolyl plane, coplanar with that of biphenylene, places its methyl group opposite to the other tolyl, see TS-1 in Figure S-1 of the Supporting Information, In fact, the pathway for the alternative transition state (having the methyl on the same side of the other tolyl, see TS-1′ in Figure S-1 of the Supporting Information) has a higher energy (7.25 vs 6.35 kcal mol -1) and therefore can be considered as forbidden. In the allowed pathway, only one of the two tolyl rings becomes, alternatively, coplanar with biphenylene, whereas the other remains close to its original position: the rotation processes of the tolyl substituents are thus independent of each other
-
-1) and therefore can be considered as forbidden. In the allowed pathway, only one of the two tolyl rings becomes, alternatively, coplanar with biphenylene, whereas the other remains close to its original position: the rotation processes of the tolyl substituents are thus independent of each other.
-
-
-
-
24
-
-
37549070532
-
-
Energy of the transition state for the enantiomerization (syn to syn interconversion, i.e, 90° torsion via π-barrier) is not necessarily equal to that for the interconversion of the two anti conformers: two different transition states thus imply two different π-barriers, as predicted by calculations (Table 1, Scheme 2, and Figure S-1, The pathways for the 90° torsion (π-barriers) take place through transition states where both the tolyl rings move away simultaneously from their original positions, reaching dispositions where both are tilted by the same dihedral angle with respect to biphenylene see: TS-2 and TS-3 of Figure S-1 of the Supporting Information, The corresponding single imaginary normal modes involve the movement of both m-tolyl rings; accordingly, the 90° torsion processes should be considered examples of correlated motions. As a further indication, the computations show that situations where only one of the two tolyl groups has moved across
-
Energy of the transition state for the enantiomerization (syn to syn interconversion, i.e., 90° torsion via π-barrier) is not necessarily equal to that for the interconversion of the two anti conformers: two different transition states thus imply two different π-barriers, as predicted by calculations (Table 1, Scheme 2, and Figure S-1). The pathways for the 90° torsion (π-barriers) take place through transition states where both the tolyl rings move away simultaneously from their original positions, reaching dispositions where both are tilted by the same dihedral angle with respect to biphenylene (see: TS-2 and TS-3 of Figure S-1 of the Supporting Information). The corresponding single imaginary normal modes involve the movement of both m-tolyl rings; accordingly, the 90° torsion processes should be considered examples of correlated motions. As a further indication, the computations show that situations where only one of the two tolyl groups has moved across to the nearly orthogonal position do not correspond to transition states.
-
-
-
-
25
-
-
37549000376
-
-
Computed10 shift differences of the methyl groups are quite close to the experimental differences, although their absolute values are consistently downfield by about 0.65 ± 0.1 ppm with respect to the corresponding experimental data. The previous assignment of the anti-in structure of 1 as more stable than the anti-out (based on the 0.75 kcal mol-1 lower computed energy, as in Figure 1) is further confirmed by the computed methyl shifts that are predicted to be upfield for anti-in (1.82 ppm) with respect to anti-out (2.52 ppm, such a computed difference (0.70 ppm) agrees with the difference (0.87 ppm) observed in the experimental spectrum, where the most intense signal is likewise upfield with respect to the least intense one 1.08 and 1.95 ppm, respectively, as in the -173°C trace of Figure 3
-
-1 lower computed energy, as in Figure 1) is further confirmed by the computed methyl shifts that are predicted to be upfield for anti-in (1.82 ppm) with respect to anti-out (2.52 ppm): such a computed difference (0.70 ppm) agrees with the difference (0.87 ppm) observed in the experimental spectrum, where the most intense signal is likewise upfield with respect to the least intense one (1.08 and 1.95 ppm, respectively, as in the -173°C trace of Figure 3).
-
-
-
-
26
-
-
37549006205
-
-
4) is needed for describing the direct interconversion of the two enantiomers within the syn conformation (see Scheme 1).
-
4) is needed for describing the direct interconversion of the two enantiomers within the syn conformation (see Scheme 1).
-
-
-
-
27
-
-
37549013558
-
-
Pathways for the anti-in to syn and for the syn to anti-out steric interconversion share the same transition state (see Scheme 2, thus, the corresponding ΔG‡ values (derived from the rate constants k1 and k2, i.e, 6.4 and 6.2 kcal mol -1, respectively) differ solely by the ΔG° value between the ground states of anti-in and syn experimental value 0.15 kcal mol-1, Thus, in practice, there is only one steric barrier, corresponding to the higher of these two ΔG‡ values, i.e, 6.4 ± 0.15 kcal mol-1, as in Table 1
-
-1, as in Table 1.
-
-
-
-
28
-
-
33845375398
-
-
-1 should be taken into account.
-
-1 should be taken into account.
-
-
-
-
29
-
-
5844330066
-
-
When these types of situations are encountered in dynamic NMR processes, the effects of the higher barrier are invisible until also the lower barrier is frozen. See, for instance: (a) Jackson, W. R.; Jennings, W. B. Tetrahedron Lett. 1974, 15, 1837-1838.
-
When these types of situations are encountered in dynamic NMR processes, the effects of the higher barrier are invisible until also the lower barrier is frozen. See, for instance: (a) Jackson, W. R.; Jennings, W. B. Tetrahedron Lett. 1974, 15, 1837-1838.
-
-
-
-
30
-
-
0030864530
-
-
(b) Anderson, J. E.; Casarini, D.; Ijeh, A. J.; Lunazzi, L. J. Am. Chem. Soc. 1997, 119, 8050-8057.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 8050-8057
-
-
Anderson, J.E.1
Casarini, D.2
Ijeh, A.J.3
Lunazzi, L.4
-
31
-
-
0034685987
-
-
(c) Lunazzi, L.; Mazzanti, A.; Álvarez Muñoz, A. J. Org. Chem. 2000, 65, 3200-3206.
-
(2000)
J. Org. Chem
, vol.65
, pp. 3200-3206
-
-
Lunazzi, L.1
Mazzanti, A.2
Álvarez Muñoz, A.3
-
33
-
-
0035200608
-
-
(b) Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34, 885-894.
-
(2001)
Acc. Chem. Res
, vol.34
, pp. 885-894
-
-
Jennings, W.B.1
Farrell, B.M.2
Malone, J.F.3
-
35
-
-
37549057830
-
-
Humayun Kabir, S. M.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda, M. J. Chem Soc., Perkin Trans. 1 2001, 159-165.
-
(2001)
J. Chem Soc., Perkin Trans. 1
, pp. 159-165
-
-
Humayun Kabir, S.M.1
Hasegawa, M.2
Kuwatani, Y.3
Yoshida, M.4
Matsuyama, H.5
Iyoda, M.6
-
36
-
-
0029739928
-
-
For the preparation of the intermediate 2,2′,6,6′- tetrabromobiphenyl, see: Rajca, A.; Safronov, A.; Rajca, S.; Ross, C. R., II; Stezowski, J. J. J. Am. Chem. Soc 1996, 118, 7272-7279.
-
For the preparation of the intermediate 2,2′,6,6′- tetrabromobiphenyl, see: Rajca, A.; Safronov, A.; Rajca, S.; Ross, C. R., II; Stezowski, J. J. J. Am. Chem. Soc 1996, 118, 7272-7279.
-
-
-
-
37
-
-
0037112726
-
-
Leroux, F.; Schlosser, M. Angew. Chem., Int. Ed. 2002, 41, 4272-4274.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 4272-4274
-
-
Leroux, F.1
Schlosser, M.2
-
38
-
-
20444467679
-
A3.; Krishnamurthy, K
-
(a) Bradley, S. A3.; Krishnamurthy, K. Magn. Reson. Chem. 2005, 43, 117-123.
-
(2005)
Magn. Reson. Chem
, vol.43
, pp. 117-123
-
-
Bradley, S.1
-
39
-
-
84989076126
-
-
(b) Willker, W.; Leibfritz, D.; Kerssebaum, R.; Bermel, W. Magn. Reson. Chem. 1993, 31, 287-292.
-
(1993)
Magn. Reson. Chem
, vol.31
, pp. 287-292
-
-
Willker, W.1
Leibfritz, D.2
Kerssebaum, R.3
Bermel, W.4
|