-
1
-
-
77950631819
-
Nonvanishing of algebraic entropy for geometrically finite groups of isometries of Hadamard manifolds preprint(2004)
-
Relatively hyperbolic groups, preprint
-
R. Alperin, G. Noskov, Nonvanishing of algebraic entropy for geometrically finite groups of isometries of Hadamard manifolds, preprint(2004). B. Bowditch, Relatively hyperbolic groups, preprint(1999).
-
(1999)
B Bowditch
-
-
Alperin, R.1
Noskov, G.2
-
2
-
-
77950644722
-
-
C. Drutu, Quasi-isometric rigidity of groups, preprint(2004)
-
C. Drutu, Quasi-isometric rigidity of groups, preprint(2004).
-
-
-
-
3
-
-
0036350570
-
-
Uniform exponential growth for linear groups MR1916428 (2003g:20074)
-
A. Eskin, S. Mozes, H. Oh, Uniform exponential growth for linear groups, Int. Math. Res. Not. 2002, no.31, 1675-1683. MR1916428 (2003g:20074)
-
Int. Math. Res. Not.
, vol.2002
, Issue.31
, pp. 1675-1683
-
-
Eskin, A.1
Mozes, S.2
Oh, H.3
-
4
-
-
0032221787
-
Relatively hyperbolic groups
-
MR1650094 (99j:20043)
-
B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no.5, 810-840. MR1650094 (99j:20043)
-
(1998)
Geom. Funct. Anal.
, vol.8
, Issue.5
, pp. 810-840
-
-
Farb, B.1
-
5
-
-
0003195390
-
-
Hyperbolic Groups (ed. S. Gersten) M.S.R.I. Publications No.8, Springer-Verlag MR0919829 (89e:20070)
-
M. Gromov, Hyperbolic Groups, in "Essays in Group Theory" (ed. S. Gersten) M.S.R.I. Publications No.8, Springer-Verlag(1987) 75-263. MR0919829 (89e:20070)
-
(1987)
Essays in Group Theory
, pp. 75-263
-
-
Gromov, M.1
-
6
-
-
0037908111
-
One-relator groups of exponential growth have uniformly exponential growth
-
R. Grigorchuk, P. de la Harpe, One-relator groups of exponential growth have uniformly exponential growth, translation in Math. Notes 69 (2001), no.3-4, 575-577. MR1846003 (2002b:20041) (Pubitemid 33751595)
-
(2001)
Mathematical Notes
, vol.69
, Issue.3-4
, pp. 575-577
-
-
Grigorchuk, R.I.1
De La Harpe, P.2
-
8
-
-
24144434940
-
Hadamard spaces with isolated flats
-
MR2175151
-
G. Hruska, B. Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005), 1501-1538. MR2175151
-
(2005)
Geom. Topol.
, vol.9
, pp. 1501-1538
-
-
Hruska, G.1
Kleiner, B.2
-
9
-
-
0032275421
-
Croissance uniforme dans les groupes hyperboliques
-
M. Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble) 48 (1998), no.5, 1441-1453. MR1662255 (99m:20080) (Pubitemid 128375132)
-
(1998)
Annales de l'Institut Fourier
, vol.48
, Issue.5
, pp. 1441-1453
-
-
Koubi, M.1
-
10
-
-
30344434601
-
Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems
-
vi+100pp. MR2182268
-
D. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no.843, vi+100pp. MR2182268
-
(2006)
Mem. Amer. Math. Soc.
, vol.179
, Issue.843
-
-
Osin, D.1
-
11
-
-
0037874962
-
The entropy of solvable groups
-
DOI 10.1017/S0143385702000937
-
D. Osin, The entropy of solvable groups, Ergodic Theory Dynam. Systems 23 (2003), no.3, 907-918. MR1992670 (2004f:20065) (Pubitemid 36913933)
-
(2003)
Ergodic Theory and Dynamical Systems
, vol.23
, Issue.3
, pp. 907-918
-
-
Osin, D.V.1
-
12
-
-
34247553095
-
Weakly amenable groups
-
D. Osin, Weakly amenable groups, Contemp. Math., 298 (2002), 105-113.
-
(2002)
Contemp. Math.
, vol.298
, pp. 105-113
-
-
Osin, D.1
-
13
-
-
0842281990
-
On exponential growth and uniformly exponential growth for groups
-
DOI 10.1007/s00222-003-0321-8
-
J. Wilson, On exponential growth and uniformly exponential growth for groups, Invent. Math. 155 (2004), no.2, 287-303. MR2031429 (2004k:20085) (Pubitemid 38169959)
-
(2004)
Inventiones Mathematicae
, vol.155
, Issue.2
, pp. 287-303
-
-
Wilson, J.S.1
-
14
-
-
1042302435
-
A topological characterisation of relatively hyperbolic groups
-
A. Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41-89. MR2039323 (2005e:20064) (Pubitemid 38203223)
-
(2004)
Journal fur die Reine und Angewandte Mathematik
, Issue.566
, pp. 41-89
-
-
Yaman, A.1
|