-
1
-
-
0345705157
-
Optimal transport maps in Monge-Kantorovich problem
-
Higher Ed. Press, Beijing
-
L. Ambrosio, Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing, 2002) III. Higher Ed. Press, Beijing (2002) 131-140.
-
(2002)
Proceedings of the ICM (Beijing, 2002)
, vol.3
, pp. 131-140
-
-
Ambrosio, L.1
-
2
-
-
37449017420
-
-
L. Ambrosio, Lecture notes on optimal transport, in Mathematical Aspects of Evolving Interfaces, L. Ambrosio et al. Eds., Lect. Notes in Math. 1812 (2003) 1-52.
-
L. Ambrosio, Lecture notes on optimal transport, in Mathematical Aspects of Evolving Interfaces, L. Ambrosio et al. Eds., Lect. Notes in Math. 1812 (2003) 1-52.
-
-
-
-
5
-
-
0030295226
-
Fast/slow diffusion and growing sandpiles
-
G. Aronson, L..C Evans and Y. Wu, Fast/slow diffusion and growing sandpiles. J. Diff. Eqns. 131 (1996) 304-335.
-
(1996)
J. Diff. Eqns
, vol.131
, pp. 304-335
-
-
Aronson, G.1
Evans, L.C.2
Wu, Y.3
-
6
-
-
33645518990
-
Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control
-
C Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5 (2005) 333-361.
-
(2005)
Comput. Methods Appl. Math
, vol.5
, pp. 333-361
-
-
Bahriawati, C.1
Carstensen, C.2
-
9
-
-
0034407460
-
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem
-
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393.
-
(2000)
Numer. Math
, vol.84
, pp. 375-393
-
-
Benamou, J.-D.1
Brenier, Y.2
-
10
-
-
0031138841
-
Shape optimization solutions via Monge-Kantorovich equation
-
G. Bouchitté, G. Buttazzo and P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation. CR. Acad. Sci. Paris 324-1 (1997) 1185-1191.
-
(1997)
CR. Acad. Sci. Paris
, vol.324 -1
, pp. 1185-1191
-
-
Bouchitté, G.1
Buttazzo, G.2
Seppecher, P.3
-
11
-
-
72449206831
-
Free boundaries in optimal transport and Monge-Ampère obstacle problems
-
to appear
-
L.A. Caffarelli and R.J. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann. Math. (to appear).
-
Ann. Math
-
-
Caffarelli, L.A.1
McCann, R.J.2
-
12
-
-
17444397383
-
The relaxation of some classes of variational integrals with pointwise continuous-type gradient constraints
-
R. De Arcangelis and E. Zappale, The relaxation of some classes of variational integrals with pointwise continuous-type gradient constraints. Appl. Math. Optim. 51 (2005) 251-277.
-
(2005)
Appl. Math. Optim
, vol.51
, pp. 251-277
-
-
De Arcangelis, R.1
Zappale, E.2
-
16
-
-
0032622583
-
Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem
-
L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc. 137 (1999).
-
(1999)
Mem. Amer. Math. Soc
, vol.137
-
-
Evans, L.C.1
Gangbo, W.2
-
17
-
-
0032395606
-
A mixed finite element method for a nonlinear Dirichlet problem
-
M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121-132.
-
(1998)
IMA J. Numer. Anal
, vol.18
, pp. 121-132
-
-
Farhloul, M.1
-
18
-
-
2142681908
-
On a mixed finite element method for the p-Laplacian
-
M. Farhloul and H. Manouzi, On a mixed finite element method for the p-Laplacian. Can. Appl. Math. Q. 8 (2000) 67-78.
-
(2000)
Can. Appl. Math. Q
, vol.8
, pp. 67-78
-
-
Farhloul, M.1
Manouzi, H.2
-
19
-
-
37449000936
-
-
M. Feldman, Growth of a sandpile around an obstacle, in Monge Ampere Equation: Applications to Geometry and Optimization, L.A Caffarelli and M. Milman Eds., Contemp. Math. 226, AMS, Providence (1999) 55-78.
-
M. Feldman, Growth of a sandpile around an obstacle, in Monge Ampere Equation: Applications to Geometry and Optimization, L.A Caffarelli and M. Milman Eds., Contemp. Math. 226, AMS, Providence (1999) 55-78.
-
-
-
-
23
-
-
24944565638
-
Equivalence between some definitions for the optimal mass transport problem and for transport density on manifolds
-
A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for transport density on manifolds. Ann. Mat. Pura Appl. 184 (2005) 215-238.
-
(2005)
Ann. Mat. Pura Appl
, vol.184
, pp. 215-238
-
-
Pratelli, A.1
-
24
-
-
0030488764
-
Variational model for sandpile growth
-
L. Prigozhin, Variational model for sandpile growth. Eur. J. Appl. Math. 7 (1996) 225-235.
-
(1996)
Eur. J. Appl. Math
, vol.7
, pp. 225-235
-
-
Prigozhin, L.1
-
26
-
-
0034360363
-
Numerical and analytical results for the transportation problem of Monge-Kantorovich
-
L. Rüschendorf and L. Uckelmann, Numerical and analytical results for the transportation problem of Monge-Kantorovich. Metrika 51 (2000) 245-258.
-
(2000)
Metrika
, vol.51
, pp. 245-258
-
-
Rüschendorf, L.1
Uckelmann, L.2
-
27
-
-
0039472976
-
∞ approximation of vector fields in the plane
-
∞ approximation of vector fields in the plane. Lecture Notes in Num. Appl. Anal. 5 (1982) 273-288.
-
(1982)
Lecture Notes in Num. Appl. Anal
, vol.5
, pp. 273-288
-
-
Strang, G.1
-
28
-
-
37449001883
-
-
C Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. AMS, Providence RI (2003).
-
C Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. AMS, Providence RI (2003).
-
-
-
|