메뉴 건너뛰기




Volumn 34, Issue 3, 2008, Pages 1659-1665

DDoS attack detection method using cluster analysis

Author keywords

Cluster analysis; DDoS; Proactive detection; Security

Indexed keywords

CLUSTER ANALYSIS; COMPUTER ARCHITECTURE; DATABASE SYSTEMS; FEATURE EXTRACTION; SECURITY OF DATA;

EID: 37349125374     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.01.040     Document Type: Article
Times cited : (234)

References (24)
  • 1
    • 37349030557 scopus 로고    scopus 로고
    • Akella, A. et al. (2003). Detecting DDoS Attacks on ISP Networks. In ACM SIGMOD/PODS Workshop on management and processing of data streams (MPDS) FCRC. .
  • 2
    • 37349010949 scopus 로고    scopus 로고
    • Cabrera, J. B. D. et al. (2001). Proactive detection of distributed denial of service attacks using MIB traffic variables-A feasibility study. In Proceedings of the seventh IFIP/IEEE international symposium on integrated network management, Seattle, May, 1-14.
  • 3
    • 37349069004 scopus 로고    scopus 로고
    • Computer Emergency Response Team (1999). Results of the distributed-systems intruder tools workshop. .
  • 4
    • 37349056225 scopus 로고    scopus 로고
    • Criscuolo, P. J. (2000). Distributed denial of service Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht CIAC-2319. Department of Energy Computer Incident Advisory (CIAC), UCRL-ID-136939, Rev. 1, Lawrence Livermore National Laboratory.
  • 5
    • 84942256107 scopus 로고    scopus 로고
    • Feinstein, L. et al. (2003). Statistical approach to DDoS attack detection and response. In Proceedings of the DARPA information survivability conference and exposition (pp. 303-314).
  • 6
    • 16644393989 scopus 로고    scopus 로고
    • Real-time detection of distributed denial-of-service attacks using RBF networks and statistical features
    • Gavrilis D., and Dermatas E. Real-time detection of distributed denial-of-service attacks using RBF networks and statistical features. Computer Networks 48 2 (2005) 235-245
    • (2005) Computer Networks , vol.48 , Issue.2 , pp. 235-245
    • Gavrilis, D.1    Dermatas, E.2
  • 7
    • 26844488270 scopus 로고    scopus 로고
    • PAID: A probabilistic agent-based intrusion detection system
    • Gowadia V., et al. PAID: A probabilistic agent-based intrusion detection system. Computers and Security 24 7 (2005) 529-545
    • (2005) Computers and Security , vol.24 , Issue.7 , pp. 529-545
    • Gowadia, V.1
  • 10
    • 33747873971 scopus 로고    scopus 로고
    • An effective DDoS attack detection and packet-filtering scheme
    • Jeong S., et al. An effective DDoS attack detection and packet-filtering scheme. IEICE Transactions on Communications E89-B 7 (2006) 2033-2042
    • (2006) IEICE Transactions on Communications , vol.E89-B , Issue.7 , pp. 2033-2042
    • Jeong, S.1
  • 13
    • 77953077374 scopus 로고    scopus 로고
    • Jung, J. & Krishnamurthy, B. (2002). Flash crowds and denial of service attacks: Characterization and implications for CDNs and web sites. In Proceedings of ACM conference on computer and communications security, May 30-41.
  • 15
    • 26844582131 scopus 로고    scopus 로고
    • Defending against spoofed DDoS attacks with path fingerprint
    • Lee F.Y., and Shieh S. Defending against spoofed DDoS attacks with path fingerprint. Computers and Security 24 7 (2005) 571-586
    • (2005) Computers and Security , vol.24 , Issue.7 , pp. 571-586
    • Lee, F.Y.1    Shieh, S.2
  • 16
    • 0036321445 scopus 로고    scopus 로고
    • Use of K-nearest neighbor classifier for intrusion detection
    • Liao Y., and Vemuri R. Use of K-nearest neighbor classifier for intrusion detection. Computers and Security 21 5 (2001) 439-448
    • (2001) Computers and Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, R.2
  • 17
    • 3242772995 scopus 로고    scopus 로고
    • Constructing detection knowledge for DDoS intrusion tolerance
    • Lin S.C., and Tseng S.S. Constructing detection knowledge for DDoS intrusion tolerance. Expert Systems with Applications 27 (2004) 379-390
    • (2004) Expert Systems with Applications , vol.27 , pp. 379-390
    • Lin, S.C.1    Tseng, S.S.2
  • 18
    • 4544272175 scopus 로고    scopus 로고
    • Controlling high bandwidth aggregates in the network
    • Mahajan R., et al. Controlling high bandwidth aggregates in the network. ACM Computer Communication Review 32 2 (2002) 62-73
    • (2002) ACM Computer Communication Review , vol.32 , Issue.2 , pp. 62-73
    • Mahajan, R.1
  • 19
    • 37349088281 scopus 로고    scopus 로고
    • MIT Lincoln Lab (2000). DARPA intrusion detection scenario specific datasets. .
  • 22
    • 37349046169 scopus 로고    scopus 로고
    • Staniford-Chen, S. et al. (1998). GrIDS-A graph-based intrusion detection system for large networks. In The 19th national information systems security conference (pp. 361-370).
  • 23
    • 37349095438 scopus 로고    scopus 로고
    • Stereilein, W. W. et al. (2002). Improved detection of low-profile probe and denial-of-service attacks. In Workshop on statistical and machine learning techniques in computer intrusion detection, Baltimore, Maryland, June 11-13.
  • 24
    • 0037328484 scopus 로고    scopus 로고
    • Sustaining availability of web services under distributed denial of service attacks
    • Xu J., and Lee W. Sustaining availability of web services under distributed denial of service attacks. IEEE Transactions on Computers 52 2 (2003) 195-208
    • (2003) IEEE Transactions on Computers , vol.52 , Issue.2 , pp. 195-208
    • Xu, J.1    Lee, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.