-
3
-
-
37349108991
-
-
For carbon oxides, see
-
For carbon oxides, see: H. Butenschön, Angew. Chem. 2007, 119, 4086-4089;
-
(2007)
Angew. Chem
, vol.119
, pp. 4086-4089
-
-
Butenschön, H.1
-
4
-
-
34250766127
-
-
Angew. Chem. Int. Ed. 2007, 46, 4012-4014, and references therein.
-
Angew. Chem. Int. Ed. 2007, 46, 4012-4014, and references therein.
-
-
-
-
6
-
-
0035829941
-
-
S. Peppe, S. Dua, J. H. Bowie, J. Phys. Chem. A 2001, 105, 10139-10145.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 10139-10145
-
-
Peppe, S.1
Dua, S.2
Bowie, J.H.3
-
7
-
-
0032371428
-
-
a) C. A. Schalley, G. Hornung, D. Schröder, H. Schwarz, Chem. Soc. Rev. 1998, 27, 91-104;
-
(1998)
Chem. Soc. Rev
, vol.27
, pp. 91-104
-
-
Schalley, C.A.1
Hornung, G.2
Schröder, D.3
Schwarz, H.4
-
10
-
-
0000769878
-
-
K. A. Nguyen, M. T. Carroll, M. S. Gordon, J. Am. Chem. Soc. 1991, 113, 7924-7929.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 7924-7929
-
-
Nguyen, K.A.1
Carroll, M.T.2
Gordon, M.S.3
-
11
-
-
37349093186
-
-
M. Gronzka, J. V. Knop, L. Klasinc, N. Trinajstic, Croat. Chem. Acta 1985, 57, 1629-1632.
-
(1985)
Croat. Chem. Acta
, vol.57
, pp. 1629-1632
-
-
Gronzka, M.1
Knop, J.V.2
Klasinc, L.3
Trinajstic, N.4
-
12
-
-
0038476393
-
-
A. Ebrahimi, F. Deyhimi, H. Roohi, J. Mol. Struct. 2003, 626, 223-229.
-
(2003)
J. Mol. Struct
, vol.626
, pp. 223-229
-
-
Ebrahimi, A.1
Deyhimi, F.2
Roohi, H.3
-
14
-
-
10944220613
-
-
G. de Petris, A. Cartoni, M. Rosi, A. Troiani, G. Angelini, O. Ursini, Chem. Eur. J 2004, 10, 6411-6421.
-
(2004)
Chem. Eur. J
, vol.10
, pp. 6411-6421
-
-
de Petris, G.1
Cartoni, A.2
Rosi, M.3
Troiani, A.4
Angelini, G.5
Ursini, O.6
-
16
-
-
0037092314
-
-
O. Witasse, O. Dutuit, J. Lilensten, R. Thissen, J. Zabka, C. Alcaraz, P. L. Blelly, S. W. Bougher, S. Engel, L. H. Andersen, K. Seiersen, Geophys. Res. Lett. 2002, 29, 1263.
-
(2002)
Geophys. Res. Lett
, vol.29
, pp. 1263
-
-
Witasse, O.1
Dutuit, O.2
Lilensten, J.3
Thissen, R.4
Zabka, J.5
Alcaraz, C.6
Blelly, P.L.7
Bougher, S.W.8
Engel, S.9
Andersen, L.H.10
Seiersen, K.11
-
17
-
-
0042206535
-
-
P. Franceschi, R. Thissen, J. Žabka, J. Roithová, Z. Herman, O. Dutuit, Int. J. Mass Spectrom. 2003, 228, 507-516.
-
(2003)
Int. J. Mass Spectrom
, vol.228
, pp. 507-516
-
-
Franceschi, P.1
Thissen, R.2
Žabka, J.3
Roithová, J.4
Herman, Z.5
Dutuit, O.6
-
18
-
-
33845590682
-
-
For recent reviews about bond-forming reactions of molecular dications, see: a
-
For recent reviews about bond-forming reactions of molecular dications, see: a) S. D. Price. Int. J. Mass Spectrom. 2007, 260, 1-19;
-
(2007)
Int. J. Mass Spectrom
, vol.260
, pp. 1-19
-
-
Price, S.D.1
-
21
-
-
37349000737
-
-
unpublished results
-
C. L. Ricketts, D. Schröder, J. Roithová, H. Schwarz, R. Thissen, O. Dutuit, S. D. Price, unpublished results.
-
-
-
Ricketts, C.L.1
Schröder, D.2
Roithová, J.3
Schwarz, H.4
Thissen, R.5
Dutuit, O.6
Price, S.D.7
-
22
-
-
37349093185
-
-
The experiments were performed with a TSQ mass spectrometer which has an exchangeable ion source and a quadrupole-octopole-quadrupole configuration as described elsewhere.[15,18] The precursor ions generated by electron ionization (EI) and were characterized by investigations of their metastable components and their reactions with noble gases.[16] The first quadrupole (Q1) was used as a mass filter to select the parent ion of interest (CO22+ isotopologues) the octopole served as a collision cell to which neutral CO2 isotopologues are introduced under single-collision conditions, and the second quadrupole (Q2) was scanned in the desired mass range. In all experiments, the mass resolution of Q1 was sufficiently high to select a single isotopologue of CO2 2, The mass resolution of Q2 was varied between intermediate values (ensuring a proper resolution of the singly and doubly charged ions) and deliberately lower
-
18O) were used as purchased.
-
-
-
-
23
-
-
34548645352
-
-
J. Roithová, D. Schröder, J. Mišek, I. G. Stará, I. Starý, J. Mass Spectrom. 2007, 42, 1233-1237.
-
(2007)
J. Mass Spectrom
, vol.42
, pp. 1233-1237
-
-
Roithová, J.1
Schröder, D.2
Mišek, J.3
Stará, I.G.4
Starý, I.5
-
24
-
-
37349075601
-
-
2] in Scheme 1 is strictly formal and does not indicate any particular structure.
-
2] in Scheme 1 is strictly formal and does not indicate any particular structure.
-
-
-
-
25
-
-
37349007991
-
-
NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg, USA, 2003, see: http://webbook.nist.gov.
-
NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg, USA, 2003, see: http://webbook.nist.gov.
-
-
-
-
26
-
-
22944436481
-
-
A. E. Slattery, T. A. Field, M. Ahmad, R. I. Hall, J. Lambourne, F. Penent, P. Lablanquie, J. H. D. Eland, J. Chem. Phys. 2005, 122, 084317.
-
(2005)
J. Chem. Phys
, vol.122
, pp. 084317
-
-
Slattery, A.E.1
Field, T.A.2
Ahmad, M.3
Hall, R.I.4
Lambourne, J.5
Penent, F.6
Lablanquie, P.7
Eland, J.H.D.8
-
27
-
-
0000382523
-
-
For similar competitions between bond-forming processes and highly exothermic electron-transfer reactions, see: a W. Y. Lu, P. Tosi, D. Bassi, J. Chem. Phys. 2000, 112, 4648-4651;
-
For similar competitions between bond-forming processes and highly exothermic electron-transfer reactions, see: a) W. Y. Lu, P. Tosi, D. Bassi, J. Chem. Phys. 2000, 112, 4648-4651;
-
-
-
-
28
-
-
33644912853
-
-
b) J. Roithová, Z. Herman, D. Schröder, H. Schwarz, Chem. Eur. J. 2006, 12, 2465-2471;
-
(2006)
Chem. Eur. J
, vol.12
, pp. 2465-2471
-
-
Roithová, J.1
Herman, Z.2
Schröder, D.3
Schwarz, H.4
-
31
-
-
37349072622
-
-
Initial calculations were performed using the B3LYP method with 6-311G* basis sets as implemented in Gaussian03 (Gaussian Inc, Pittsburgh, USA, 2002, All intermediates were characterized by frequency analysis, and the energies given refer to 0 K including corrections for zero-point energy. To briefly test the performance of this theoretical approach for the carbon oxides of interest, the ionization energies (IEs) of CO and CO2 were computed and found to be in good agreement with experiment, for example, IE(CO, 14.14 eV (exptl 14.01 eV, IE(CO2, 13.67 eV (exptl 13.78 eV, and IE(CO2, 23.70 eV (exptl 23.56 eV, The final energies given in the text refer to single-point calculations using the CCSD(T) method (CCSD(T, coupled cluster with single and double excitations and perturbative inclusion of triple excitations) in conjunction with correlation-consistent valence triple zeta basis set, that is, CCSD(T)/cc-pVTZ//B3LYP/6-311G&z
-
2 are computed to be 13.65 and 23.44 eV, respectively.
-
-
-
-
32
-
-
0037138636
-
-
and references therein
-
A. F. Jalbout, Int. J. Quantum Chem. 2002, 86, 541-568, and references therein.
-
(2002)
Int. J. Quantum Chem
, vol.86
, pp. 541-568
-
-
Jalbout, A.F.1
-
33
-
-
0037742151
-
-
For spin-state crossings of gaseous ions, see: a
-
For spin-state crossings of gaseous ions, see: a) D. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139-145;
-
(2000)
Acc. Chem. Res
, vol.33
, pp. 139-145
-
-
Schröder, D.1
Shaik, S.2
Schwarz, H.3
-
35
-
-
33745782331
-
-
For an example of spin-state crossing in the reaction of a gaseous dication, see
-
For an example of spin-state crossing in the reaction of a gaseous dication, see: J. Roithová, J. Žabka, Z. Herman, R. Thissen, D. Schröder, H. Schwarz, J. Phys. Chem. A 2006, 110, 6447-6453.
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 6447-6453
-
-
Roithová, J.1
Žabka, J.2
Herman, Z.3
Thissen, R.4
Schröder, D.5
Schwarz, H.6
|