-
1
-
-
0004150063
-
-
Cambridge University Press, London
-
Boal D. Mechanics of the Cell (2002), Cambridge University Press, London
-
(2002)
Mechanics of the Cell
-
-
Boal, D.1
-
2
-
-
4243232232
-
Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
-
Ou-Yang Z.C., and Helfrich W. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39 (1989) 5280-5288
-
(1989)
Phys. Rev. A
, vol.39
, pp. 5280-5288
-
-
Ou-Yang, Z.C.1
Helfrich, W.2
-
3
-
-
0000333372
-
Shape equations for axisymmetric vesicles: A clarification
-
Julicher F., and Seifert U. Shape equations for axisymmetric vesicles: A clarification. Phys. Rev. E 49 (1994) 4728-4731
-
(1994)
Phys. Rev. E
, vol.49
, pp. 4728-4731
-
-
Julicher, F.1
Seifert, U.2
-
6
-
-
10244222314
-
A geometric theory on the elasticity of bio-membranes
-
Tu Z.C., and Ou-Yang Z.C. A geometric theory on the elasticity of bio-membranes. J. Phys. A: Math. Gen. 37 (2004) 11407-11429
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, pp. 11407-11429
-
-
Tu, Z.C.1
Ou-Yang, Z.C.2
-
7
-
-
19744368318
-
Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes
-
Yin Y.J., et al. Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. J. Biomech. 38 (2005) 1433-1440
-
(2005)
J. Biomech.
, vol.38
, pp. 1433-1440
-
-
Yin, Y.J.1
-
8
-
-
21444435894
-
Integral theorems based on a new gradient operator derived from biomembrane (part I): Fundamentals
-
Yin Y.J. Integral theorems based on a new gradient operator derived from biomembrane (part I): Fundamentals. Tsinghua Science and Technology 10 3 (2005) 372-375
-
(2005)
Tsinghua Science and Technology
, vol.10
, Issue.3
, pp. 372-375
-
-
Yin, Y.J.1
-
9
-
-
21444443511
-
Integral theorems based on a new gradient operator derived from biomembrane (part II): Applications
-
Yin Y.J. Integral theorems based on a new gradient operator derived from biomembrane (part II): Applications. Tsinghua Science and Technology 10 3 (2005) 376-380
-
(2005)
Tsinghua Science and Technology
, vol.10
, Issue.3
, pp. 376-380
-
-
Yin, Y.J.1
-
10
-
-
26444612695
-
General mathematical frame for open or closed biomembranes (part I): Equilibrium theory and geometrically constraint equation
-
Yin Y.J., Yin J., and Ni D. General mathematical frame for open or closed biomembranes (part I): Equilibrium theory and geometrically constraint equation. J. Math. Biol. 51 (2005) 403-413
-
(2005)
J. Math. Biol.
, vol.51
, pp. 403-413
-
-
Yin, Y.J.1
Yin, J.2
Ni, D.3
-
11
-
-
33645088663
-
Preferred equilibrium structures of a smectic-A phase grown from an isotropic phase: Origin of focal conic domains
-
Naito H., et al. Preferred equilibrium structures of a smectic-A phase grown from an isotropic phase: Origin of focal conic domains. Phys. Rev. E 52 (1995) 2095-2098
-
(1995)
Phys. Rev. E
, vol.52
, pp. 2095-2098
-
-
Naito, H.1
-
12
-
-
6344241429
-
Geometrical constraint equations and geometrically permissible condition for vesicles
-
Yin Y.J., and Yin J. Geometrical constraint equations and geometrically permissible condition for vesicles. Chin. Phys. Lett. 21 10 (2004) 2057-2058
-
(2004)
Chin. Phys. Lett.
, vol.21
, Issue.10
, pp. 2057-2058
-
-
Yin, Y.J.1
Yin, J.2
-
13
-
-
0242331729
-
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension
-
Baumgart T., Hess S.T., and Webb W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821-824
-
(2003)
Nature
, vol.425
, pp. 821-824
-
-
Baumgart, T.1
Hess, S.T.2
Webb, W.W.3
|