메뉴 건너뛰기




Volumn , Issue , 2007, Pages 90-95

Minimal positive realizations for transfer functions with negative poles

Author keywords

Minimal realizations; Positive decomposition; Positive linear systems

Indexed keywords

NEGATIVE POLES; POSITIVE DECOMPOSITION PROBLEM; SINGLE-INPUT-SINGLE-OUTPUT (SISO) SYSTEM;

EID: 37349041318     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CHICC.2006.280803     Document Type: Conference Paper
Times cited : (3)

References (21)
  • 3
    • 2942530941 scopus 로고    scopus 로고
    • A tutorial on the positive realization problem
    • Benvenuti L. and Farina L. (2004), A tutorial on the positive realization problem, IEEE Trans. Automat. Contr., 49(5): 651-664.
    • (2004) IEEE Trans. Automat. Contr , vol.49 , Issue.5 , pp. 651-664
    • Benvenuti, L.1    Farina, L.2
  • 6
    • 0004151494 scopus 로고
    • Cambridge University Press, Cambredge, England
    • Horn R. A. and Johnson C. R. (1985), Matrix Analysis. Cambridge University Press, Cambredge, England.
    • (1985) Matrix Analysis
    • Horn, R.A.1    Johnson, C.R.2
  • 8
    • 0030086558 scopus 로고    scopus 로고
    • Nonnegative realization of a linear system with nonnegative impulse response
    • Anderson B. D. O., Deistler M., Farina L., and Benvenuti L. (1996), Nonnegative realization of a linear system with nonnegative impulse response, IEEE Trans. Circuits Syst., I, 43(2): 134-141.
    • (1996) IEEE Trans. Circuits Syst., I , vol.43 , Issue.2 , pp. 134-141
    • Anderson, B.D.O.1    Deistler, M.2    Farina, L.3    Benvenuti, L.4
  • 9
    • 0000660103 scopus 로고    scopus 로고
    • An example of how positivity may force realisations of 'large' dimension
    • Benvenuti L. and Farina L. (1999), An example of how positivity may force realisations of 'large' dimension, Syst. Control Lett., 36(4): 261-266.
    • (1999) Syst. Control Lett , vol.36 , Issue.4 , pp. 261-266
    • Benvenuti, L.1    Farina, L.2
  • 10
    • 0034262487 scopus 로고    scopus 로고
    • Minimal positive realizations of transfer functions with positive real poles
    • Benvenuti L., Farina L., Anderson B. D. O., and Bruyne F. De (2000), Minimal positive realizations of transfer functions with positive real poles, IEEE Trans. Circuits Syst., I, 47(9): 1370-1377.
    • (2000) IEEE Trans. Circuits Syst., I , vol.47 , Issue.9 , pp. 1370-1377
    • Benvenuti, L.1    Farina, L.2    Anderson, B.D.O.3    De, B.F.4
  • 11
    • 0000928778 scopus 로고    scopus 로고
    • On the existence of a positive realization
    • Farina L. (1996), On the existence of a positive realization, Syst. Control Lett., 28(4): 219-226.
    • (1996) Syst. Control Lett , vol.28 , Issue.4 , pp. 219-226
    • Farina, L.1
  • 12
    • 0038379341 scopus 로고    scopus 로고
    • Bounds on the Size of minimal non-negative realizations for discrete-time LTI systems
    • Hadjicostis C. (1999), Bounds on the Size of minimal non-negative realizations for discrete-time LTI systems, Syst. Control Lett., 37(1): 39-43.
    • (1999) Syst. Control Lett , vol.37 , Issue.1 , pp. 39-43
    • Hadjicostis, C.1
  • 13
    • 17844394684 scopus 로고    scopus 로고
    • Minimal positive realizations for a class of transfer functions
    • Halmschlager A. and Matolcsi M. (2005), Minimal positive realizations for a class of transfer functions, IEEE Trans. Circuits Syst., II, 52(4): 177-180.
    • (2005) IEEE Trans. Circuits Syst., II , vol.52 , Issue.4 , pp. 177-180
    • Halmschlager, A.1    Matolcsi, M.2
  • 14
    • 0037480964 scopus 로고    scopus 로고
    • A lowerbound on the dimension of positive realization
    • Nagy B. and Matolcsi M. (2003). A lowerbound on the dimension of positive realization, IEEE Trans. Circuits Syst., I, 50(6): 782-784.
    • (2003) IEEE Trans. Circuits Syst., I , vol.50 , Issue.6 , pp. 782-784
    • Nagy, B.1    Matolcsi, M.2
  • 15
    • 25844486947 scopus 로고    scopus 로고
    • Minimal positive realizations of transfer functions with nonnegative multiple poles
    • Nagy B. and Matolcsi M. (2005), Minimal positive realizations of transfer functions with nonnegative multiple poles, IEEE Trans. Automat. Contr., 50(9): 1447-1450.
    • (2005) IEEE Trans. Automat. Contr , vol.50 , Issue.9 , pp. 1447-1450
    • Nagy, B.1    Matolcsi, M.2
  • 16
    • 0002855931 scopus 로고
    • About nonnegative realizations
    • Nieuwenhuis J. W. (1982), About nonnegative realizations, Syst. Control Lett., 1(5): 283-287.
    • (1982) Syst. Control Lett , vol.1 , Issue.5 , pp. 283-287
    • Nieuwenhuis, J.W.1
  • 17
    • 0021394486 scopus 로고
    • Reachability, observability and realizability of continuous-time positive systems
    • Ohta Y., Maeda H., and Kodama S. (1984), Reachability, observability and realizability of continuous-time positive systems, SIAM J. Control Optim., 22(2): 171-180.
    • (1984) SIAM J. Control Optim , vol.22 , Issue.2 , pp. 171-180
    • Ohta, Y.1    Maeda, H.2    Kodama, S.3
  • 19
    • 8744244182 scopus 로고    scopus 로고
    • Minimal positive realizations of a class of third-order systems
    • Boston, Massachusetts, USA
    • Wang Z., Wang L., Yu W., and Liu G. (2004), Minimal positive realizations of a class of third-order systems, Proceeding of the 2004 American Control Conference, Boston, Massachusetts, USA, 5: 4151-4152.
    • (2004) Proceeding of the 2004 American Control Conference , vol.5 , pp. 4151-4152
    • Wang, Z.1    Wang, L.2    Yu, W.3    Liu, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.