메뉴 건너뛰기




Volumn 34, Issue 3, 2008, Pages 1599-1608

An incremental cluster-based approach to spam filtering

Author keywords

Concept drift; Email classification; Incremental learning; Skewed class distribution

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA COMMUNICATION EQUIPMENT; ELECTRONIC MAIL; LEARNING SYSTEMS; PERSONNEL TRAINING;

EID: 37349022259     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.01.018     Document Type: Article
Times cited : (50)

References (21)
  • 1
    • 37349001444 scopus 로고    scopus 로고
    • Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., & Spyropoulos, D. (2000). Learning to filter spam e-mail: a comparison of a naive bayesian and a memory-based approach. The 4th PKDD's workshop on machine learning and textual information access.
  • 3
    • 37349082636 scopus 로고    scopus 로고
    • Delany, S. J., & Cunningham, P. (2006). ECUE: a spam filter that uses machine learning to track concept drift. Technical Report, Computer Science Department, The University of Dublin. Available from https://www.cs.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-05.pdf.
  • 5
    • 12244261390 scopus 로고    scopus 로고
    • In vivo spam filtering: a challenge problem for KDD
    • Fawcett T. In vivo spam filtering: a challenge problem for KDD. ACM SIGKDD Explorations Newsletter 5 2 (2003) 140-148
    • (2003) ACM SIGKDD Explorations Newsletter , vol.5 , Issue.2 , pp. 140-148
    • Fawcett, T.1
  • 6
    • 37349093193 scopus 로고    scopus 로고
    • Forman, G. (2006). Tackling concept drift by temporal inductive transfer. SIGIR '06 ACM.
  • 8
    • 37349062190 scopus 로고    scopus 로고
    • Honda, T., Motizuki, H., Ho, T. B., & Okumura, M. (1997). Generating decision trees from an unbalanced data set. In Maarten vanSomeren., Gerhard Widmer (Eds.), Poster papers presented at the 9th European conference on machine learning (ECML) (pp. 68-77).
  • 10
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence-based feature selection for machine learning-based text categorization
    • Lee C., and Lee G.G. Information gain and divergence-based feature selection for machine learning-based text categorization. Information Processing and Management 42 1 (2006) 155-165
    • (2006) Information Processing and Management , vol.42 , Issue.1 , pp. 155-165
    • Lee, C.1    Lee, G.G.2
  • 11
    • 37349124377 scopus 로고    scopus 로고
    • Lian, Y. (2002). E-mail filtering, Master thesis. University of Sheffield, Department of Advanced Software Engineering.
  • 12
    • 33750133338 scopus 로고    scopus 로고
    • Luo, X., & Zincir-Heywood, N. (2005). Comparison of a SOM based sequence analysis system and naive bayesian classifier for spam filtering. In Proceedings of IEEE international joint conference on neural networks - IJCNN '05 (Vol. 4, pp. 2571 - 2576).
  • 13
    • 37349094537 scopus 로고    scopus 로고
    • McCallum, A. (2002). Bow: a toolkit for statistical language modeling, text retrieval, classification and clustering. Available from http://www.cs.cmu.edu/~mccallum/bow/.
  • 14
    • 37349111214 scopus 로고    scopus 로고
    • Monard, M. C., & Batista, G. E. A. P. A. (2002). Learning with skewed class distributions. In Advances in logic, artificial intelligence and robotics (LAPTEC'02).
  • 15
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A.K., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning 39 (2000) 103-134
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 16
    • 0030785931 scopus 로고    scopus 로고
    • Interface agents that learn: an investigation of learning issues in a mail agent interface
    • Payne T.R., and Edward P. Interface agents that learn: an investigation of learning issues in a mail agent interface. Applied Artificial Intelligence (1997) 1-32
    • (1997) Applied Artificial Intelligence , pp. 1-32
    • Payne, T.R.1    Edward, P.2
  • 17
  • 18
    • 37349044113 scopus 로고    scopus 로고
    • Sahami, M., Dumais, S., Heckerman D., & Horvitz, E., (1998). A Bayesian approach to filtering junk e-mail. AAAI-98 workshop on learning for text categorization.
  • 19
    • 37349057637 scopus 로고    scopus 로고
    • Stanley, K. O. (2003). Learning concept drift with a committee of decision trees. Department of Computer Sciences Technical Report AI-03-302.
  • 20
    • 0242456817 scopus 로고    scopus 로고
    • Wu, H., Pang, T. H., Liu, B., & Li., X. (2002). A refinement approach to handling model misfit in text categorization. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (pp. 23-26).
  • 21
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • Zhang T., and Oles F.J. Text categorization based on regularized linear classification methods. Information Retrieval 4 1 (2001) 5-31
    • (2001) Information Retrieval , vol.4 , Issue.1 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.