메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 338-343

Uniqueness of limit cycle in an immune system

Author keywords

Immune response; Limit cycles; Nonlinear oscillatory phenomena; Uniqueness

Indexed keywords

MATHEMATICAL MODELS;

EID: 37249055658     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2006.11.002     Document Type: Article
Times cited : (2)

References (17)
  • 1
    • 0040006834 scopus 로고
    • Predator-prey equations simulating an immune response
    • Bell G.I. Predator-prey equations simulating an immune response. Math. Biosci. 16 (1973) 291-314
    • (1973) Math. Biosci. , vol.16 , pp. 291-314
    • Bell, G.I.1
  • 2
    • 0001747368 scopus 로고
    • Uniqueness of a limit cycle for a predator-prey system
    • Cheng K.S. Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 12 4 (1981) 541-548
    • (1981) SIAM J. Math. Anal. , vol.12 , Issue.4 , pp. 541-548
    • Cheng, K.S.1
  • 3
    • 0020410402 scopus 로고
    • Study on models of single populations: an expansion of the logistic and exponential equations
    • Cui Q., and Lawson G.J. Study on models of single populations: an expansion of the logistic and exponential equations. J. Theor. Biol. 98 (1982) 645-659
    • (1982) J. Theor. Biol. , vol.98 , pp. 645-659
    • Cui, Q.1    Lawson, G.J.2
  • 4
    • 0022492525 scopus 로고
    • Multiple stable equilibria in a predator-prey system
    • Harrison G.W. Multiple stable equilibria in a predator-prey system. Bull. Math. Biol. 48 (1986) 137-148
    • (1986) Bull. Math. Biol. , vol.48 , pp. 137-148
    • Harrison, G.W.1
  • 5
    • 84976015332 scopus 로고
    • Existence and stability of periodic solutions of a third order nonlinear autonomous system simulating immune response in animals
    • Hsu I.D., and Kazarinnoff N.D. Existence and stability of periodic solutions of a third order nonlinear autonomous system simulating immune response in animals. Proc. R. Soc. Edinburgh A 77 (1977) 163-175
    • (1977) Proc. R. Soc. Edinburgh , vol.A , Issue.77 , pp. 163-175
    • Hsu, I.D.1    Kazarinnoff, N.D.2
  • 6
    • 37249053578 scopus 로고    scopus 로고
    • X.C. Huang, Uniqueness of limit cycles in a predator-prey model simulating an immune response, in: R. Mohler, A. Asachenkov (Eds.), Selected Topics on Mathematical Models in Immunology and Medicine, International Institute of Applied Systems Analysis, Austria, 1990, pp. 147-153.
  • 7
    • 0024448915 scopus 로고
    • Conditions for uniqueness of limit cycles in general predator-prey system
    • Huang X.C., and Merrill S.J. Conditions for uniqueness of limit cycles in general predator-prey system. Math. Biosci. 96 (1989) 47-60
    • (1989) Math. Biosci. , vol.96 , pp. 47-60
    • Huang, X.C.1    Merrill, S.J.2
  • 8
    • 25144455200 scopus 로고    scopus 로고
    • A study of a general Kolmogorov system
    • Huang X.C., and Zhu L. A study of a general Kolmogorov system. J. Yangzhou Polytech. Univ. 8 1 (2004) 20-32
    • (2004) J. Yangzhou Polytech. Univ. , vol.8 , Issue.1 , pp. 20-32
    • Huang, X.C.1    Zhu, L.2
  • 9
    • 13444257572 scopus 로고    scopus 로고
    • Limit cycles in a general Kolmogorov model
    • Huang X.C., and Zhu L. Limit cycles in a general Kolmogorov model. Nonlinear Anal. Theory Methods Appl. 60 8 (2005) 1393-1414
    • (2005) Nonlinear Anal. Theory Methods Appl. , vol.60 , Issue.8 , pp. 1393-1414
    • Huang, X.C.1    Zhu, L.2
  • 10
    • 0002861760 scopus 로고
    • Uniqueness of limit cycle in Gause-type models of predator-prey system
    • Kuang Y., and Freedman H.I. Uniqueness of limit cycle in Gause-type models of predator-prey system. Math. Biosci. 88 (1988) 67-84
    • (1988) Math. Biosci. , vol.88 , pp. 67-84
    • Kuang, Y.1    Freedman, H.I.2
  • 11
    • 0039645998 scopus 로고
    • Limit cycles in predator-prey communities
    • May R.M. Limit cycles in predator-prey communities. Science 177 (1972) 900-902
    • (1972) Science , vol.177 , pp. 900-902
    • May, R.M.1
  • 12
    • 0010283502 scopus 로고
    • Mathematical models of humeral immune response
    • Burton T.A. (Ed), Marcel Dekker, New York
    • Merrill S.J. Mathematical models of humeral immune response. In: Burton T.A. (Ed). Modeling and Differential Equations in Biology (1980), Marcel Dekker, New York
    • (1980) Modeling and Differential Equations in Biology
    • Merrill, S.J.1
  • 13
    • 0016200968 scopus 로고
    • Periodic solutions of predator-prey simulating an immune response
    • Pimbley Jr. G.H. Periodic solutions of predator-prey simulating an immune response. Math. Biosci. 21 (1974) 251-277
    • (1974) Math. Biosci. , vol.21 , pp. 251-277
    • Pimbley Jr., G.H.1
  • 14
    • 0017416077 scopus 로고
    • Periodic solutions of third order predator-prey equations simulating an immune response
    • Pimbley Jr. G.H. Periodic solutions of third order predator-prey equations simulating an immune response. Arch. Rat. Mech. Anal. 64 (1976) 169-192
    • (1976) Arch. Rat. Mech. Anal. , vol.64 , pp. 169-192
    • Pimbley Jr., G.H.1
  • 15
    • 0017416077 scopus 로고
    • Bifurcation behavior of periodic solutions of the third order simulated immune response problem
    • Pimbley Jr. G.H. Bifurcation behavior of periodic solutions of the third order simulated immune response problem. Arch. Rat. Mech. Anal. 64 (1976) 169-192
    • (1976) Arch. Rat. Mech. Anal. , vol.64 , pp. 169-192
    • Pimbley Jr., G.H.1
  • 16
    • 37249012111 scopus 로고    scopus 로고
    • A mathematical model in immune response
    • Zhu L., and Huang X.C. A mathematical model in immune response. Chung Yuan J. 33 3 (2005) 563-571
    • (2005) Chung Yuan J. , vol.33 , Issue.3 , pp. 563-571
    • Zhu, L.1    Huang, X.C.2
  • 17
    • 33749490487 scopus 로고    scopus 로고
    • Relative position of limit cycles in an immune response
    • Zhu L., and Huang X.C. Relative position of limit cycles in an immune response. Dynamical Syst. Int. J. 21 3 (2006) 351-361
    • (2006) Dynamical Syst. Int. J. , vol.21 , Issue.3 , pp. 351-361
    • Zhu, L.1    Huang, X.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.