-
1
-
-
0040006834
-
Predator-prey equations simulating an immune response
-
Bell G.I. Predator-prey equations simulating an immune response. Math. Biosci. 16 (1973) 291-314
-
(1973)
Math. Biosci.
, vol.16
, pp. 291-314
-
-
Bell, G.I.1
-
2
-
-
0001747368
-
Uniqueness of a limit cycle for a predator-prey system
-
Cheng K.S. Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 12 4 (1981) 541-548
-
(1981)
SIAM J. Math. Anal.
, vol.12
, Issue.4
, pp. 541-548
-
-
Cheng, K.S.1
-
3
-
-
0020410402
-
Study on models of single populations: an expansion of the logistic and exponential equations
-
Cui Q., and Lawson G.J. Study on models of single populations: an expansion of the logistic and exponential equations. J. Theor. Biol. 98 (1982) 645-659
-
(1982)
J. Theor. Biol.
, vol.98
, pp. 645-659
-
-
Cui, Q.1
Lawson, G.J.2
-
4
-
-
0022492525
-
Multiple stable equilibria in a predator-prey system
-
Harrison G.W. Multiple stable equilibria in a predator-prey system. Bull. Math. Biol. 48 (1986) 137-148
-
(1986)
Bull. Math. Biol.
, vol.48
, pp. 137-148
-
-
Harrison, G.W.1
-
5
-
-
84976015332
-
Existence and stability of periodic solutions of a third order nonlinear autonomous system simulating immune response in animals
-
Hsu I.D., and Kazarinnoff N.D. Existence and stability of periodic solutions of a third order nonlinear autonomous system simulating immune response in animals. Proc. R. Soc. Edinburgh A 77 (1977) 163-175
-
(1977)
Proc. R. Soc. Edinburgh
, vol.A
, Issue.77
, pp. 163-175
-
-
Hsu, I.D.1
Kazarinnoff, N.D.2
-
6
-
-
37249053578
-
-
X.C. Huang, Uniqueness of limit cycles in a predator-prey model simulating an immune response, in: R. Mohler, A. Asachenkov (Eds.), Selected Topics on Mathematical Models in Immunology and Medicine, International Institute of Applied Systems Analysis, Austria, 1990, pp. 147-153.
-
-
-
-
7
-
-
0024448915
-
Conditions for uniqueness of limit cycles in general predator-prey system
-
Huang X.C., and Merrill S.J. Conditions for uniqueness of limit cycles in general predator-prey system. Math. Biosci. 96 (1989) 47-60
-
(1989)
Math. Biosci.
, vol.96
, pp. 47-60
-
-
Huang, X.C.1
Merrill, S.J.2
-
8
-
-
25144455200
-
A study of a general Kolmogorov system
-
Huang X.C., and Zhu L. A study of a general Kolmogorov system. J. Yangzhou Polytech. Univ. 8 1 (2004) 20-32
-
(2004)
J. Yangzhou Polytech. Univ.
, vol.8
, Issue.1
, pp. 20-32
-
-
Huang, X.C.1
Zhu, L.2
-
9
-
-
13444257572
-
Limit cycles in a general Kolmogorov model
-
Huang X.C., and Zhu L. Limit cycles in a general Kolmogorov model. Nonlinear Anal. Theory Methods Appl. 60 8 (2005) 1393-1414
-
(2005)
Nonlinear Anal. Theory Methods Appl.
, vol.60
, Issue.8
, pp. 1393-1414
-
-
Huang, X.C.1
Zhu, L.2
-
10
-
-
0002861760
-
Uniqueness of limit cycle in Gause-type models of predator-prey system
-
Kuang Y., and Freedman H.I. Uniqueness of limit cycle in Gause-type models of predator-prey system. Math. Biosci. 88 (1988) 67-84
-
(1988)
Math. Biosci.
, vol.88
, pp. 67-84
-
-
Kuang, Y.1
Freedman, H.I.2
-
11
-
-
0039645998
-
Limit cycles in predator-prey communities
-
May R.M. Limit cycles in predator-prey communities. Science 177 (1972) 900-902
-
(1972)
Science
, vol.177
, pp. 900-902
-
-
May, R.M.1
-
12
-
-
0010283502
-
Mathematical models of humeral immune response
-
Burton T.A. (Ed), Marcel Dekker, New York
-
Merrill S.J. Mathematical models of humeral immune response. In: Burton T.A. (Ed). Modeling and Differential Equations in Biology (1980), Marcel Dekker, New York
-
(1980)
Modeling and Differential Equations in Biology
-
-
Merrill, S.J.1
-
13
-
-
0016200968
-
Periodic solutions of predator-prey simulating an immune response
-
Pimbley Jr. G.H. Periodic solutions of predator-prey simulating an immune response. Math. Biosci. 21 (1974) 251-277
-
(1974)
Math. Biosci.
, vol.21
, pp. 251-277
-
-
Pimbley Jr., G.H.1
-
14
-
-
0017416077
-
Periodic solutions of third order predator-prey equations simulating an immune response
-
Pimbley Jr. G.H. Periodic solutions of third order predator-prey equations simulating an immune response. Arch. Rat. Mech. Anal. 64 (1976) 169-192
-
(1976)
Arch. Rat. Mech. Anal.
, vol.64
, pp. 169-192
-
-
Pimbley Jr., G.H.1
-
15
-
-
0017416077
-
Bifurcation behavior of periodic solutions of the third order simulated immune response problem
-
Pimbley Jr. G.H. Bifurcation behavior of periodic solutions of the third order simulated immune response problem. Arch. Rat. Mech. Anal. 64 (1976) 169-192
-
(1976)
Arch. Rat. Mech. Anal.
, vol.64
, pp. 169-192
-
-
Pimbley Jr., G.H.1
-
16
-
-
37249012111
-
A mathematical model in immune response
-
Zhu L., and Huang X.C. A mathematical model in immune response. Chung Yuan J. 33 3 (2005) 563-571
-
(2005)
Chung Yuan J.
, vol.33
, Issue.3
, pp. 563-571
-
-
Zhu, L.1
Huang, X.C.2
-
17
-
-
33749490487
-
Relative position of limit cycles in an immune response
-
Zhu L., and Huang X.C. Relative position of limit cycles in an immune response. Dynamical Syst. Int. J. 21 3 (2006) 351-361
-
(2006)
Dynamical Syst. Int. J.
, vol.21
, Issue.3
, pp. 351-361
-
-
Zhu, L.1
Huang, X.C.2
|