-
1
-
-
0035627527
-
A random graph model for power law graphs
-
Aiello, W., Chung, F. and Lu, L. (2001) A random graph model for power law graphs. Experiment. Math. 10 53-66.
-
(2001)
Experiment. Math
, vol.10
, pp. 53-66
-
-
Aiello, W.1
Chung, F.2
Lu, L.3
-
2
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286 509-512.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabási, A.-L.1
Albert, R.2
-
4
-
-
22144454306
-
The phase transition in a uniformly grown random graph has infinite order
-
Bollobás, B., Janson, S. and Riordan, O. (2005) The phase transition in a uniformly grown random graph has infinite order. Random Struct. Alg. 26 1-36.
-
(2005)
Random Struct. Alg
, vol.26
, pp. 1-36
-
-
Bollobás, B.1
Janson, S.2
Riordan, O.3
-
5
-
-
34547688893
-
The phase transition in inhomogeneous random graphs
-
Bollobás, B., Janson, S. and Riordan, O. (2007) The phase transition in inhomogeneous random graphs. Random Struct. Alg. 31 3-122.
-
(2007)
Random Struct. Alg
, vol.31
, pp. 3-122
-
-
Bollobás, B.1
Janson, S.2
Riordan, O.3
-
7
-
-
0035474697
-
Are randomly grown graphs really random?
-
Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J. and Strogatz, S. H. (2001) Are randomly grown graphs really random? Phys. Rev. E 64 041902.
-
(2001)
Phys. Rev. E
, vol.64
, pp. 041902
-
-
Callaway, D.S.1
Hopcroft, J.E.2
Kleinberg, J.M.3
Newman, M.E.J.4
Strogatz, S.H.5
-
8
-
-
84990675524
-
Almost all graphs with 1.44n edges are 3-colorable
-
Chvátal, V. (1991) Almost all graphs with 1.44n edges are 3-colorable. Random Struct. Alg. 2 11-28.
-
(1991)
Random Struct. Alg
, vol.2
, pp. 11-28
-
-
Chvátal, V.1
-
9
-
-
11144249332
-
The cores of random hypergraphs with a given degree sequence
-
Cooper, C. (2004) The cores of random hypergraphs with a given degree sequence. Random Struct. Alg. 25 353-375.
-
(2004)
Random Struct. Alg
, vol.25
, pp. 353-375
-
-
Cooper, C.1
-
10
-
-
85037891195
-
Differential equation approximations for Markov chains
-
Manuscript
-
Darling, R. W. R. and Norris, J. R. (2005) Differential equation approximations for Markov chains. Manuscript.
-
(2005)
-
-
Darling, R.W.R.1
Norris, J.R.2
-
12
-
-
37249009858
-
-
Durrett, R. (2003) Rigorous result for the CHKNS random graph model. In Proc. Discrete Random Walks 2003 (C. Banderier and C. Krattenthaler, eds), Discrete Mathematics and Theoretical Computer Science AC 95-104. http://dmtcs.loria.fr/proceedings/
-
Durrett, R. (2003) Rigorous result for the CHKNS random graph model. In Proc. Discrete Random Walks 2003 (C. Banderier and C. Krattenthaler, eds), Discrete Mathematics and Theoretical Computer Science AC 95-104. http://dmtcs.loria.fr/proceedings/
-
-
-
-
13
-
-
11144292619
-
The giant k-core of a random graph with a specified degree sequence
-
Manuscript
-
Fernholz, D. and Ramachandran, V. (2003) The giant k-core of a random graph with a specified degree sequence. Manuscript.
-
(2003)
-
-
Fernholz, D.1
Ramachandran, V.2
-
14
-
-
0002446794
-
A lower bound for the critical probability in a certain percolation process
-
Harris, T. E. (1960) A lower bound for the critical probability in a certain percolation process. Proc. Cam. Philos. Soc. 56 13-20.
-
(1960)
Proc. Cam. Philos. Soc
, vol.56
, pp. 13-20
-
-
Harris, T.E.1
-
15
-
-
33846659833
-
A simple solution to the k-core problem
-
Janson, S. and Luczak, M. J. (2007) A simple solution to the k-core problem. Random Struct. Alg. 30 50-62.
-
(2007)
Random Struct. Alg
, vol.30
, pp. 50-62
-
-
Janson, S.1
Luczak, M.J.2
-
16
-
-
51249176440
-
When are random graphs connected?
-
Kalikow, S. and Weiss, B. (1988) When are random graphs connected? Israel J. Math. 62 257-268.
-
(1988)
Israel J. Math
, vol.62
, pp. 257-268
-
-
Kalikow, S.1
Weiss, B.2
-
18
-
-
0040935488
-
Families of non-disjoint subsets
-
Kleitman, D. J. (1966) Families of non-disjoint subsets, J. Combin. Theory 1 153-155.
-
(1966)
J. Combin. Theory
, vol.1
, pp. 153-155
-
-
Kleitman, D.J.1
-
19
-
-
24144432057
-
Cores in random hypergraphs and Boolean formulas
-
Molloy, M. (2005) Cores in random hypergraphs and Boolean formulas. Random Struct. Alg. 27 124-135.
-
(2005)
Random Struct. Alg
, vol.27
, pp. 124-135
-
-
Molloy, M.1
-
20
-
-
84990671447
-
A critical point for random graphs with a given degree sequence
-
Molloy, M. and Reed, B. (1995) A critical point for random graphs with a given degree sequence. Random Struct. Alg. 6 161-179.
-
(1995)
Random Struct. Alg
, vol.6
, pp. 161-179
-
-
Molloy, M.1
Reed, B.2
-
22
-
-
26844481982
-
The small giant component in scale-free random, graphs
-
Riordan, O. (2005) The small giant component in scale-free random, graphs. Combin. Probab. Comput. 14 897-938.
-
(2005)
Combin. Probab. Comput
, vol.14
, pp. 897-938
-
-
Riordan, O.1
-
23
-
-
41349085965
-
General formalism for inhomogeneous random graphs
-
Söderberg, B. (2002) General formalism for inhomogeneous random graphs. Phys. Rev. E 66 066121.
-
(2002)
Phys. Rev. E
, vol.66
, pp. 066121
-
-
Söderberg, B.1
|