-
1
-
-
0009062749
-
Approximating maximum stable set and minimum graph coloring problems with the positive semidefinite relaxation
-
Kluwer Academic Publishers, Dordrecht
-
Benson S., and Ye Y. Approximating maximum stable set and minimum graph coloring problems with the positive semidefinite relaxation. Applications and Algorithms of Complementarity (2000), Kluwer Academic Publishers, Dordrecht 1-18
-
(2000)
Applications and Algorithms of Complementarity
, pp. 1-18
-
-
Benson, S.1
Ye, Y.2
-
2
-
-
84898974025
-
Clustering via concave minimization
-
Mozer M.C., Jordan M.I., and Petsche T. (Eds), The MIT Press, Cambridge, MA
-
Bradley P.S., Mangasarian O.L., and Street W.N. Clustering via concave minimization. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), The MIT Press, Cambridge, MA 368
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 368
-
-
Bradley, P.S.1
Mangasarian, O.L.2
Street, W.N.3
-
3
-
-
0018456690
-
New methods to color the vertices of a graph
-
Brélaz D. New methods to color the vertices of a graph. Comm. ASM 22 4 (1979) 252-256
-
(1979)
Comm. ASM
, vol.22
, Issue.4
, pp. 252-256
-
-
Brélaz, D.1
-
4
-
-
0000100195
-
Chromatic scheduling and the chromatic number problem
-
Brown J.R. Chromatic scheduling and the chromatic number problem. Management Sci. 19 4 (1972) 456-463
-
(1972)
Management Sci.
, vol.19
, Issue.4
, pp. 456-463
-
-
Brown, J.R.1
-
5
-
-
1542337156
-
A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
-
Burer S., and Monteiro R.D.C. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Programming 95 (2003) 329-357
-
(2003)
Math. Programming
, vol.95
, pp. 329-357
-
-
Burer, S.1
Monteiro, R.D.C.2
-
6
-
-
4344652238
-
On approximate graph colouring and max-k-cut algorithms based on the θ-function
-
de Klerk E., Pasechnik D.V., and Warners J.P. On approximate graph colouring and max-k-cut algorithms based on the θ-function. J. Combin. Optim. 8 (2004) 267-294
-
(2004)
J. Combin. Optim.
, vol.8
, pp. 267-294
-
-
de Klerk, E.1
Pasechnik, D.V.2
Warners, J.P.3
-
7
-
-
0039191267
-
Heuristics for graph coloring
-
De Werra D. Heuristics for graph coloring. Computing 7 (1990) 191-208
-
(1990)
Computing
, vol.7
, pp. 191-208
-
-
De Werra, D.1
-
8
-
-
37048998872
-
-
I. Dukanovic, Semidefinite programming applied to graph coloring problem, Ph.D. Thesis, University of Klagenfurt, Austria, 2007, forthcoming.
-
-
-
-
9
-
-
33846706231
-
-
I. Dukanovic, F. Rendl, Semidefinite programming relaxations for graph coloring and maximal clique problems, Math. Programming 109 (2007) 345-365.
-
-
-
-
10
-
-
27844522089
-
Genetic and hybrid algorithms for graph coloring
-
Fleurent C., and Ferland J.A. Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63 (1996) 437-461
-
(1996)
Ann. Oper. Res.
, vol.63
, pp. 437-461
-
-
Fleurent, C.1
Ferland, J.A.2
-
11
-
-
0000965650
-
Hybrid evolutionary algorithms for graph coloring
-
Galinier P., and Hao J.K. Hybrid evolutionary algorithms for graph coloring. J. Combin. Optim. 3 (1999) 379-397
-
(1999)
J. Combin. Optim.
, vol.3
, pp. 379-397
-
-
Galinier, P.1
Hao, J.K.2
-
13
-
-
0344443738
-
Genetic algorithm for graph coloring: exploration of Galinier and Hao's algorithm
-
Glass C.A., and Pruegel-Bennett A. Genetic algorithm for graph coloring: exploration of Galinier and Hao's algorithm. J. Combin. Optim. 7 (2003) 229-236
-
(2003)
J. Combin. Optim.
, vol.7
, pp. 229-236
-
-
Glass, C.A.1
Pruegel-Bennett, A.2
-
14
-
-
0000457427
-
Semidefinite programming in combinatorial optimization
-
Goemans M.X. Semidefinite programming in combinatorial optimization. Math. Programming 79 (1997) 143-162
-
(1997)
Math. Programming
, vol.79
, pp. 143-162
-
-
Goemans, M.X.1
-
15
-
-
0034415006
-
A spectral bundle method for semidefinite programming
-
Helmberg C., and Rendl F. A spectral bundle method for semidefinite programming. SIAM J. Optim. 10 (2000) 673-696
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 673-696
-
-
Helmberg, C.1
Rendl, F.2
-
16
-
-
84940395577
-
Finding the chromatic number by means of critical graphs
-
Herrmann F., and Hertz A. Finding the chromatic number by means of critical graphs. ACM J. Experimental Algorithms 7 (2002) 10
-
(2002)
ACM J. Experimental Algorithms
, vol.7
, pp. 10
-
-
Herrmann, F.1
Hertz, A.2
-
17
-
-
0023596413
-
Using tabu search for graph coloring
-
Hertz A., and De Werra D. Using tabu search for graph coloring. Computing 39 (1987) 345-351
-
(1987)
Computing
, vol.39
, pp. 345-351
-
-
Hertz, A.1
De Werra, D.2
-
18
-
-
0032028848
-
Approximate graph coloring by semidefinite programming
-
Karger D., Motwani R., and Sudan M. Approximate graph coloring by semidefinite programming. J. Assoc. Comput. Mach. 45 (1998) 246-265
-
(1998)
J. Assoc. Comput. Mach.
, vol.45
, pp. 246-265
-
-
Karger, D.1
Motwani, R.2
Sudan, M.3
-
19
-
-
0022041659
-
A generalized implicit enumeration algorithm for graph coloring
-
Kubale M., and Jackowski B. A generalized implicit enumeration algorithm for graph coloring. Comm. ACM 28 4 (1985) 412-418
-
(1985)
Comm. ACM
, vol.28
, Issue.4
, pp. 412-418
-
-
Kubale, M.1
Jackowski, B.2
-
20
-
-
0018292109
-
On the Shannon capacity of a graph
-
Lovász L. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25 (1979) 1-7
-
(1979)
IEEE Trans. Inform. Theory
, vol.25
, pp. 1-7
-
-
Lovász, L.1
-
21
-
-
0001515729
-
A column generation approach for exact graph coloring
-
Mehrotra A., and Trick M.A. A column generation approach for exact graph coloring. INFORMS J. Comput. 8 (1996) 344-354
-
(1996)
INFORMS J. Comput.
, vol.8
, pp. 344-354
-
-
Mehrotra, A.1
Trick, M.A.2
-
22
-
-
17444380875
-
Strengthening the Lovász θ (over(G, -)) bound for graph coloring
-
Meurdesoif P. Strengthening the Lovász θ (over(G, -)) bound for graph coloring. Math. Programming 102 (2005) 577-588
-
(2005)
Math. Programming
, vol.102
, pp. 577-588
-
-
Meurdesoif, P.1
-
23
-
-
0020804873
-
A correction to Brélaz's modification of Brown's coloring algorithm
-
Peemöller J. A correction to Brélaz's modification of Brown's coloring algorithm. Comm. ACM 26 8 (1983) 593-597
-
(1983)
Comm. ACM
, vol.26
, Issue.8
, pp. 593-597
-
-
Peemöller, J.1
-
24
-
-
33751550994
-
-
J. Povh, F. Rendl, A. Wiegele, A boundary point method to solve semidefinite programs, Computing 78 (2006) 277-286.
-
-
-
-
25
-
-
0000920501
-
Semidefinite optimization
-
Todd M.J. Semidefinite optimization. Acta Numer. 10 (2001) 515-560
-
(2001)
Acta Numer.
, vol.10
, pp. 515-560
-
-
Todd, M.J.1
-
26
-
-
0036361611
-
Solving some large scale semidefinite programs via the conjugate residual method
-
Toh K.C., and Kojima M. Solving some large scale semidefinite programs via the conjugate residual method. SIAM J. Optim. 12 (2002) 669-691
-
(2002)
SIAM J. Optim.
, vol.12
, pp. 669-691
-
-
Toh, K.C.1
Kojima, M.2
-
27
-
-
37049033767
-
-
M. Trick, Network resources for coloring a graph. http://mat.gsia.cmu.edu/COLOR/color.html, 1994.
-
-
-
|