메뉴 건너뛰기




Volumn , Issue , 2006, Pages 333-340

Automated caching of behavioral patterns for efficient run-time monitoring

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CACHE MEMORY; COMPUTER SOFTWARE; DATA STRUCTURES; FAULT TOLERANT COMPUTER SYSTEMS; PATTERN RECOGNITION;

EID: 36949041027     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DASC.2006.23     Document Type: Conference Paper
Times cited : (3)

References (20)
  • 1
    • 22944435659 scopus 로고    scopus 로고
    • Active learning for automatic classification of software behavior
    • J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for automatic classification of software behavior. SIGSOFT Softw. Eng. Notes, 29(4), 2004.
    • (2004) SIGSOFT Softw. Eng. Notes , vol.29 , Issue.4
    • Bowring, J.F.1    Rehg, J.M.2    Harrold, M.J.3
  • 2
    • 4544254085 scopus 로고    scopus 로고
    • Finding latent code errors via machine learning over program executions
    • Y. Brun and M. Ernst. Finding latent code errors via machine learning over program executions. In ICSE, 2004.
    • (2004) ICSE
    • Brun, Y.1    Ernst, M.2
  • 3
    • 36949010810 scopus 로고    scopus 로고
    • C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines version 2.31, Available from
    • C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines (version 2.31). Available from "http://www.csie.ntu.edu.tw/ojlin/libsvm/ ".
  • 4
    • 74149090053 scopus 로고    scopus 로고
    • Fixed vs. variable-length patterns for detecting suspicious process behavior
    • H. Debar, M. Dacier, M. Nassehi, and A. Wespi. Fixed vs. variable-length patterns for detecting suspicious process behavior. In ESORICS '98, 1998.
    • (1998) ESORICS '98
    • Debar, H.1    Dacier, M.2    Nassehi, M.3    Wespi, A.4
  • 5
    • 0035250541 scopus 로고    scopus 로고
    • Dynamically discovering likely program invariants to support program evolution
    • M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program invariants to support program evolution. In IEEE TSE, volume 27, 2001.
    • (2001) IEEE TSE , vol.27
    • Ernst, M.D.1    Cockrell, J.2    Griswold, W.G.3    Notkin, D.4
  • 6
    • 84964540406 scopus 로고    scopus 로고
    • Modeling system calls for intrusion detection with dynamic window sizes
    • E. Eskin, W. Lee, and S. J. Stolfo. Modeling system calls for intrusion detection with dynamic window sizes. In DISCEX II, 2001.
    • (2001) DISCEX II
    • Eskin, E.1    Lee, W.2    Stolfo, S.J.3
  • 8
    • 84871849450 scopus 로고    scopus 로고
    • data sets. Available from
    • S. Forrest. Computer immune systems, data sets. Available from "http://www.cs.unm.edu/immsec/data/synth-sm.html".
    • Computer immune systems
    • Forrest, S.1
  • 10
    • 27544463920 scopus 로고    scopus 로고
    • Efficient intrusion detection using automaton inlining
    • R. Gopalakrishna, E. H. Spafford, and J. Vitek. Efficient intrusion detection using automaton inlining. In SP '05, 2005.
    • (2005) SP '05
    • Gopalakrishna, R.1    Spafford, E.H.2    Vitek, J.3
  • 11
    • 0036038345 scopus 로고    scopus 로고
    • Tracking down software bugs using automatic anomaly detection
    • S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly detection. In ICSE '02, 2002.
    • (2002) ICSE '02
    • Hangal, S.1    Lam, M.S.2
  • 12
    • 0031233430 scopus 로고    scopus 로고
    • Intrusion detection via system call traces
    • A. P. Kosoresow and S. A. Hofmeyr. Intrusion detection via system call traces. IEEE Software, 14:24-42, 1997.
    • (1997) IEEE Software , vol.14 , pp. 24-42
    • Kosoresow, A.P.1    Hofmeyr, S.A.2
  • 13
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Y. Liao and V. R. Vemuri. Use of k-nearest neighbor classifier for intrusion detection. Computers & Security, 21(5):439-448, 2002.
    • (2002) Computers & Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 15
    • 0034593307 scopus 로고    scopus 로고
    • Characterizing the behavior of a program using multiple-length n-grams
    • C. Marceau. Characterizing the behavior of a program using multiple-length n-grams. In NSPW, pages 101-110, 2000.
    • (2000) NSPW , pp. 101-110
    • Marceau, C.1
  • 16
    • 12344326525 scopus 로고    scopus 로고
    • Towards the verification and validation of online learning systems: General framework and applications
    • A. Mili, G. Jiang, B. Cukic, Y. Liu, and R. Ayed. Towards the verification and validation of online learning systems: General framework and applications. In HICSS, 2004.
    • (2004) HICSS
    • Mili, A.1    Jiang, G.2    Cukic, B.3    Liu, Y.4    Ayed, R.5
  • 17
    • 0038091288 scopus 로고    scopus 로고
    • Estimating the support of a highdimensional distribution
    • Technical Report 99-87, Microsoft Research
    • B. Scholkopf, J. Piatt, J. Shawe-Taylor, A. Smola, and R. Williamson. Estimating the support of a highdimensional distribution. Technical Report 99-87, Microsoft Research, 1999.
    • (1999)
    • Scholkopf, B.1    Piatt, J.2    Shawe-Taylor, J.3    Smola, A.4    Williamson, R.5
  • 18
    • 0038011179 scopus 로고    scopus 로고
    • Specification-based anomaly detection: A new approach for detecting network intrusions
    • R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Specification-based anomaly detection: a new approach for detecting network intrusions. In CCS '02, 2002.
    • (2002) CCS '02
    • Sekar, R.1    Gupta, A.2    Frullo, J.3    Shanbhag, T.4    Tiwari, A.5    Yang, H.6    Zhou, S.7
  • 20
    • 0034836394 scopus 로고    scopus 로고
    • Intrusion detection via static analysis
    • D. Wagner and D. Dean. Intrusion detection via static analysis. In SP '01, 2001.
    • (2001) SP '01
    • Wagner, D.1    Dean, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.