메뉴 건너뛰기




Volumn 32, Issue 12, 2007, Pages 1895-1916

On the cauchy problem for the ostrovsky equation with positive dispersion

Author keywords

Cauchy problem; Local and global well posedness; Ostrovsky equation; Regularity; Weak rotation

Indexed keywords


EID: 36949035590     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605300600987314     Document Type: Article
Times cited : (42)

References (24)
  • 1
    • 0038523453 scopus 로고
    • On the surface waves in a shallow channel with an uneven bottom
    • Benilov, E. S. (1992). On the surface waves in a shallow channel with an uneven bottom. Stud. Appl. Math. 87:1-14.
    • (1992) Stud. Appl. Math , vol.87 , pp. 1-14
    • Benilov, E.S.1
  • 2
    • 34250084341 scopus 로고
    • Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schröinger equation, Part II: the KdV equation
    • Bourgain, J. (1993a). Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schröinger equation, Part II: the KdV equation. Geom. Funct. Anal. 2:107-156, 209-262.
    • (1993) Geom. Funct. Anal , vol.2
    • Bourgain, J.1
  • 3
    • 0001285869 scopus 로고
    • On the Cauchy problem for the Kadomtsev- Petviashvili equations
    • Bourgain, J. (1993b). On the Cauchy problem for the Kadomtsev- Petviashvili equations. Geom. Funct. Anal. 3:315-341.
    • (1993) Geom. Funct. Anal , vol.3 , pp. 315-341
    • Bourgain, J.1
  • 4
    • 0035879405 scopus 로고    scopus 로고
    • Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg-de Vries equation
    • Chen, G. Y., Boyd, J. P. (2001). Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg-de Vries equation. Physica D. 155:201-222.
    • (2001) Physica D , vol.155 , pp. 201-222
    • Chen, G.Y.1    Boyd, J.P.2
  • 6
    • 0026364589 scopus 로고
    • On the existence of stationary solitary waves in a rotating fluid
    • Galkin, V. N., Stepanyants, Yu. A. (1991). On the existence of stationary solitary waves in a rotating fluid. J. Appl. Math. Mech. 55(6):939-943.
    • (1991) J. Appl. Math. Mech , vol.55 , Issue.6 , pp. 939-943
    • Galkin, V.N.1    Stepanyants, Y.A.2
  • 7
    • 0043038583 scopus 로고
    • Approximate and numerical solutions of the stationary Ostrovsky equation
    • Gilman, O. A., Grimshaw, R., Stepanyants, Yu. A. (1995). Approximate and numerical solutions of the stationary Ostrovsky equation. Stud. Appl. Math. 95:115-126.
    • (1995) Stud. Appl. Math , vol.95 , pp. 115-126
    • Gilman, O.A.1    Grimshaw, R.2    Stepanyants, Y.A.3
  • 8
    • 0031574596 scopus 로고    scopus 로고
    • On the Cauchy problem for the Zakharov system
    • Ginibre, J., Tsutsumi, Y., Velo, G. (1997). On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151:384-436.
    • (1997) J. Funct. Anal , vol.151 , pp. 384-436
    • Ginibre, J.1    Tsutsumi, Y.2    Velo, G.3
  • 9
    • 31944448825 scopus 로고    scopus 로고
    • Low-regularity solutions for the Ostrovsky equation
    • Huo, Z., Jia, Y. (2006). Low-regularity solutions for the Ostrovsky equation. Proc. Edin. Math. Soc. 49:87-100.
    • (2006) Proc. Edin. Math. Soc , vol.49 , pp. 87-100
    • Huo, Z.1    Jia, Y.2
  • 10
    • 0001969794 scopus 로고
    • Oscillatory integrals and regularity of dispersive equations
    • Kenig, C. E., Ponce, G., Vega, L. (1991). Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40:33-69.
    • (1991) Indiana Univ. Math. J , vol.40 , pp. 33-69
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 11
    • 84974004169 scopus 로고
    • The Cauchy problem for the Korteweg-de vries equation in sobolev spaces of negative indices
    • Kenig, C. E., Ponce, G., Vega, L. (1993). The Cauchy problem for the Korteweg-de vries equation in sobolev spaces of negative indices. Duke Math. J. 71:1-21.
    • (1993) Duke Math. J , vol.71 , pp. 1-21
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 12
    • 0030528276 scopus 로고    scopus 로고
    • A bilinear estimate with applications to the KdV equation
    • Kenig, C. E., Ponce, G., Vega, L. (1996). A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9:573-603.
    • (1996) J. Amer. Math. Soc , vol.9 , pp. 573-603
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 13
    • 34250805443 scopus 로고    scopus 로고
    • Stability and weak rotation limit of solitary waves of the Ostrovsky equation
    • Levandosky, S., Liu, Y. (2007). Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dynam. Systems - Series B 7:793-806.
    • (2007) Discrete Contin. Dynam. Systems - Series B , vol.7 , pp. 793-806
    • Levandosky, S.1    Liu, Y.2
  • 14
    • 32844473567 scopus 로고    scopus 로고
    • Local and global well-posedness for the Ostrovsky equation
    • Linares, F., Milanés, A. (2006). Local and global well-posedness for the Ostrovsky equation. J. Differential Equations 222(2): 325-340.
    • (2006) J. Differential Equations , vol.222 , Issue.2 , pp. 325-340
    • Linares, F.1    Milanés, A.2
  • 15
    • 36949011235 scopus 로고    scopus 로고
    • On the stability of solitary waves for the Ostrovsky equation
    • Liu, Y. (2007). On the stability of solitary waves for the Ostrovsky equation. Quart. Appl. Math. 65:571-589.
    • (2007) Quart. Appl. Math , vol.65 , pp. 571-589
    • Liu, Y.1
  • 16
    • 3042638045 scopus 로고    scopus 로고
    • Stability of solitary waves and weak rotation limit for the Ostrovsky equation
    • Liu, Y., Varlamov, V. (2004). Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J. Differential Equations 203:159-183.
    • (2004) J. Differential Equations , vol.203 , pp. 159-183
    • Liu, Y.1    Varlamov, V.2
  • 17
    • 0000401372 scopus 로고
    • Nonlinear internal waves in a rotating ocean
    • Ostrovsky, L. A. (1978). Nonlinear internal waves in a rotating ocean. Okeanologia 18:181-191.
    • (1978) Okeanologia , vol.18 , pp. 181-191
    • Ostrovsky, L.A.1
  • 18
    • 0000102108 scopus 로고
    • Nonlinear Surface and Internal Waves in Rotating Fluids
    • Nonlinear wave 3. Berlin, Heidelberg: Springer
    • Ostrovsky, L. A., Stepanyants, Yu. A. (1990). Nonlinear Surface and Internal Waves in Rotating Fluids. Research Reports in Physics, Nonlinear wave 3. Berlin, Heidelberg: Springer.
    • (1990) Research Reports in Physics
    • Ostrovsky, L.A.1    Stepanyants, Y.A.2
  • 19
    • 0033586165 scopus 로고    scopus 로고
    • The Cauchy problem for higher-order KP equations
    • Saut, J. C., Tzvetkov, N. (1999). The Cauchy problem for higher-order KP equations. J. Differential Eqns. 153:196-222.
    • (1999) J. Differential Eqns , vol.153 , pp. 196-222
    • Saut, J.C.1    Tzvetkov, N.2
  • 20
    • 0347804449 scopus 로고    scopus 로고
    • Well-posedness for the Kadomtsev-Petviashvili II equation
    • Takaoka, H. (2000). Well-posedness for the Kadomtsev-Petviashvili II equation. Adv. Differential Equations 5:1421-1443.
    • (2000) Adv. Differential Equations , vol.5 , pp. 1421-1443
    • Takaoka, H.1
  • 21
    • 0002346079 scopus 로고    scopus 로고
    • On the local regularity of the Kadomtsev-Petviashvili II equation
    • Takaoka, H., Tzvetkov, N. (2001). On the local regularity of the Kadomtsev-Petviashvili II equation. International Math. Res. Notices 2:77-114.
    • (2001) International Math. Res. Notices , vol.2 , pp. 77-114
    • Takaoka, H.1    Tzvetkov, N.2
  • 22
    • 0013077914 scopus 로고    scopus 로고
    • Global low-regularity solutions for Kadomtsev-Petviashvili equations
    • Tzvetkov, N. (2000). Global low-regularity solutions for Kadomtsev-Petviashvili equations. Differential Integral Eqns. 13:1289-1320.
    • (2000) Differential Integral Eqns , vol.13 , pp. 1289-1320
    • Tzvetkov, N.1
  • 23
  • 24
    • 3042546081 scopus 로고    scopus 로고
    • Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices
    • Xavier, C. (2004). Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices. J. Differential Eqns. 13:1-10.
    • (2004) J. Differential Eqns , vol.13 , pp. 1-10
    • Xavier, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.