메뉴 건너뛰기




Volumn 1, Issue 7, 2006, Pages 21-31

Learning a classification-based Glioma growth model using MRI data

Author keywords

Brain tumors; Glioma; Growth models; Machine learning; Prediction

Indexed keywords

BRAIN; FORECASTING; LEARNING ALGORITHMS; LEARNING SYSTEMS; TISSUE;

EID: 36949024361     PISSN: 1796203X     EISSN: None     Source Type: Journal    
DOI: 10.4304/jcp.1.7.21-31     Document Type: Article
Times cited : (19)

References (32)
  • 3
    • 0032970425 scopus 로고    scopus 로고
    • Nonlinear Spatial Normalization using Basis Functions
    • J. Ashburner and K. Friston, "Nonlinear Spatial Normalization using Basis Functions," Human Brain Mapping, 7(4):254-266, 1999.
    • (1999) Human Brain Mapping , vol.7 , Issue.4 , pp. 254-266
    • Ashburner, J.1    Friston, K.2
  • 4
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-Based Morphometry. The Methods
    • J. Ashburner and K. Friston, "Voxel-Based Morphometry. The Methods," NeuroImage, 11(6):805-821, 2000.
    • (2000) NeuroImage , vol.11 , Issue.6 , pp. 805-821
    • Ashburner, J.1    Friston, K.2
  • 5
    • 0344044891 scopus 로고    scopus 로고
    • Another MRI Bias Correction Approach
    • In 8th International Conference on Functional Mapping of the Human Brain, NeuroImage
    • J. Ashburner, "Another MRI Bias Correction Approach," In 8th International Conference on Functional Mapping of the Human Brain, NeuroImage, 16(2), 2000.
    • (2000) , vol.16 , Issue.2
    • Ashburner, J.1
  • 10
    • 0030668370 scopus 로고    scopus 로고
    • Multimodal Image Coregistration and Partitioning. A Unified Framework
    • K. Friston and J. Ashburner, "Multimodal Image Coregistration and Partitioning. a Unified Framework," NeuroImage, 6:209-217, 1997.
    • (1997) NeuroImage , vol.6 , pp. 209-217
    • Friston, K.1    Ashburner, J.2
  • 11
    • 0024787435 scopus 로고
    • Radiation Therapy Treatment Planning in Supratentorial Glioblastoma Multiforme
    • E. Halperin, G. Bentel, and E. Heinz, "Radiation Therapy Treatment Planning in Supratentorial Glioblastoma Multiforme," Int. J. Radiat. Oncol. Biol. Phys., 17:1347-1350, 1989.
    • (1989) Int. J. Radiat. Oncol. Biol. Phys , vol.17 , pp. 1347-1350
    • Halperin, E.1    Bentel, G.2    Heinz, E.3
  • 12
    • 0018848780 scopus 로고
    • Assumptions in the Radiotherapy of Glioblastoma
    • F. Hochberg and A. Pruitt, "Assumptions in the Radiotherapy of Glioblastoma," Neurology, 30:907-911, 1980.
    • (1980) Neurology , vol.30 , pp. 907-911
    • Hochberg, F.1    Pruitt, A.2
  • 13
    • 0031957632 scopus 로고    scopus 로고
    • Enhancement of MR images using registration for signal averaging
    • C. Holmes, R. Hoge, L. Collins, et al., "Enhancement of MR images using registration for signal averaging," J Comput Assist Tomogr, 22(2):324-333, 1998.
    • (1998) J Comput Assist Tomogr , vol.22 , Issue.2 , pp. 324-333
    • Holmes, C.1    Hoge, R.2    Collins, L.3
  • 14
    • 0034696767 scopus 로고    scopus 로고
    • Simulated brain tumor growth dynamics using a three-dimensional cellular automaton
    • A. Kansal, S. Torquato, G. Harsh, et al., "Simulated brain tumor growth dynamics using a three-dimensional cellular automaton," J Theor Biol., 203:367-382, 2000.
    • (2000) J Theor Biol , vol.203 , pp. 367-382
    • Kansal, A.1    Torquato, S.2    Harsh, G.3
  • 15
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO Algorithm for SVM Classifier Design
    • S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, "Improvements to Platt's SMO Algorithm for SVM Classifier Design," Neural Computation, 13(3):637-649, 2001.
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.1    Shevade, S.2    Bhattacharyya, C.3    Murthy, K.4
  • 17
    • 0000521473 scopus 로고
    • Ridge Estimators in Logistic Regression
    • S. le Cessie and J. van Houwelingen, "Ridge Estimators in Logistic Regression," Applied Statistics, 41(1):191-201, 1992.
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • le Cessie, S.1    van Houwelingen, J.2
  • 18
    • 0004255908 scopus 로고    scopus 로고
    • second edition (online draft)
    • T Mitchell, "Machine Learning," second edition (online draft), 2005.
    • (2005) Machine Learning
    • Mitchell, T.1
  • 22
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naïve bayes
    • Cambridge, MA: MIT Press
    • A. Ng and M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naïve bayes," In Advances in Neural Information Processing Systems 14, Cambridge, MA: MIT Press, 2002.
    • (2002) Advances In Neural Information Processing Systems , pp. 14
    • Ng, A.1    Jordan, M.2
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines using Sequential Minimal Optimization
    • eds., Schoelkopf B., Burges C., and Smola A., MIT Press
    • J. Platt, "Fast Training of Support Vector Machines using Sequential Minimal Optimization," Advances in Kernel Methods - Support Vector Learning, eds., Schoelkopf B., Burges C., and Smola A., MIT Press, 1998.
    • (1998) Advances In Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 24
    • 0037864158 scopus 로고    scopus 로고
    • Diffusion tensor imaging of brain tumors at 3T: A potential tool for assessing white matter tract invasion?
    • S. Price, N. Burnet, T. Donovan, et al., "Diffusion tensor imaging of brain tumors at 3T: a potential tool for assessing white matter tract invasion?," Clinical Radiology, 58:455-462, 2003.
    • (2003) Clinical Radiology , vol.58 , pp. 455-462
    • Price, S.1    Burnet, N.2    Donovan, T.3
  • 26
    • 0345399126 scopus 로고
    • The Probable Error of a Mean
    • Student, "The Probable Error of a Mean," Biometrika, 6:1-25, 1908.
    • (1908) Biometrika , vol.6 , pp. 1-25
    • Student1
  • 27
    • 0033752019 scopus 로고    scopus 로고
    • A Quantitative Model for Differential Motility of Gliomas in Grey and White Matter
    • K. Swanson, E. Alvord, J. D. Murray, "A Quantitative Model for Differential Motility of Gliomas in Grey and White Matter," Cell Prolif, 33:317-329, 2000.
    • (2000) Cell Prolif , vol.33 , pp. 317-329
    • Swanson, K.1    Alvord, E.2    Murray, J.D.3
  • 28
    • 0036941569 scopus 로고    scopus 로고
    • Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery
    • K. Swanson, E. Alvord, J. D. Murray, "Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery," Acta Biotheor, 50(4):223-237, 2002.
    • (2002) Acta Biotheor , vol.50 , Issue.4 , pp. 223-237
    • Swanson, K.1    Alvord, E.2    Murray, J.D.3
  • 29
    • 0037033735 scopus 로고    scopus 로고
    • Virtual brain tumors (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy
    • K. Swanson, E. Alvord, J. D. Murray, "Virtual brain tumors (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy," British Journal of Cancer, 86:14-18, 2002.
    • (2002) British Journal of Cancer , vol.86 , pp. 14-18
    • Swanson, K.1    Alvord, E.2    Murray, J.D.3
  • 30
    • 19344373479 scopus 로고    scopus 로고
    • Hyperbolastic growth models: Theory and application
    • M. Tabatabai, D. Williams, and Z. Bursac, "Hyperbolastic growth models: theory and application," Theor Biol Med Model, 2(1):14, 2005.
    • (2005) Theor Biol Med Model , vol.2 , Issue.1 , pp. 14
    • Tabatabai, M.1    Williams, D.2    Bursac, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.