-
1
-
-
0032499581
-
Formation of titanium oxide nanotube
-
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14 (1998) 3160-3163.
-
(1998)
Langmuir
, vol.14
, pp. 3160-3163
-
-
Kasuga, T.1
Hiramatsu, M.2
Hoson, A.3
Sekino, T.4
Niihara, K.5
-
2
-
-
0033363865
-
Titania nanotubes prepared by chemical processing
-
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11 (1999) 1307-1311.
-
(1999)
Adv. Mater
, vol.11
, pp. 1307-1311
-
-
Kasuga, T.1
Hiramatsu, M.2
Hoson, A.3
Sekino, T.4
Niihara, K.5
-
3
-
-
33751044120
-
2 nanostructured materials: Synthesis, properties and applications
-
2 nanostructured materials: synthesis, properties and applications. Adv. Mater. 18 (2006) 2807-2824.
-
(2006)
Adv. Mater
, vol.18
, pp. 2807-2824
-
-
Bavykin, D.V.1
Friedrich, J.M.2
Walsh, F.C.3
-
4
-
-
34047217560
-
Structure and applications of titanate and related nanostructures
-
Chen, Q.; Peng, L.-M.: Structure and applications of titanate and related nanostructures. Int. J. Nanotechnology 4 (2007) 44-65.
-
(2007)
Int. J. Nanotechnology
, vol.4
, pp. 44-65
-
-
Chen, Q.1
Peng, L.-M.2
-
5
-
-
0013119419
-
The structure of trititanate nanotubes
-
Chen, Q.; Du, G. H.; Zhang, S.; Peng, L.-M.: The structure of trititanate nanotubes. Acta Cryst. B58 (2002) 587-593.
-
(2002)
Acta Cryst. B
, vol.58
, pp. 587-593
-
-
Chen, Q.1
Du, G.H.2
Zhang, S.3
Peng, L.-M.4
-
8
-
-
20444433623
-
-
2 nanostructures. phys. stat. sol. (b) 242 (2005) 1361-1370.
-
2 nanostructures. phys. stat. sol. (b) 242 (2005) 1361-1370.
-
-
-
-
9
-
-
0142186233
-
Nanotubes of lepidocrocite titanates
-
Ma, R.; Bando, Y.; Sasaki, T.: Nanotubes of lepidocrocite titanates. Chem. Phys. Lett. 380 (2003) 577-582.
-
(2003)
Chem. Phys. Lett
, vol.380
, pp. 577-582
-
-
Ma, R.1
Bando, Y.2
Sasaki, T.3
-
11
-
-
33745996359
-
A study on the structure and thermal stability of titanate nanotubes as a function of sodium content
-
Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S.: A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 8 (2006) 888-900.
-
(2006)
Solid State Sci
, vol.8
, pp. 888-900
-
-
Morgado, E.1
de Abreu, M.A.S.2
Pravia, O.R.C.3
Marinkovic, B.A.4
Jardim, P.M.5
Rizzo, F.C.6
Araujo, A.S.7
-
12
-
-
33645299291
-
Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes
-
Ferreira, O. P.; Filho, A. G. S.; Filho, J. M.; Alves, O. L.: Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J. Braz. Chem. Soc. 17 (2006) 393-402.
-
(2006)
J. Braz. Chem. Soc
, vol.17
, pp. 393-402
-
-
Ferreira, O.P.1
Filho, A.G.S.2
Filho, J.M.3
Alves, O.L.4
-
13
-
-
4143125523
-
Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations
-
Ma, R.; Sasaki, T.; Bando, Y.: Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations. J. Am. Chem. Soc. 126 (2004) 10382-10388.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 10382-10388
-
-
Ma, R.1
Sasaki, T.2
Bando, Y.3
-
14
-
-
14644424592
-
Alkali metal cation intercalation properties of titanate nanotubes
-
Ma, R.; Sasaki, T.; Bando, Y.: Alkali metal cation intercalation properties of titanate nanotubes. Chem. Commun. (2005) 948-950.
-
(2005)
Chem. Commun
, pp. 948-950
-
-
Ma, R.1
Sasaki, T.2
Bando, Y.3
-
15
-
-
2342637027
-
2-derived nanotubes prepared by the hydrothermal method
-
2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 19 (2004) 982-985.
-
(2004)
J. Mater. Res
, vol.19
, pp. 982-985
-
-
Suzuki, Y.1
Yoshikawa, S.2
-
16
-
-
33847652193
-
100-x (x = 0, 26, 28, 48) nanoparticles
-
100-x (x = 0, 26, 28, 48) nanoparticles. J. Phys. Chem. C 111 (2007) 714-720.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 714-720
-
-
Petkov, V.1
Ohta, T.2
Hou, Y.3
Ren, Y.4
-
17
-
-
32944478158
-
3 (x = 1, 0.5 ,0) by X-ray diffraction and the atomic pair distribution function technique
-
3 (x = 1, 0.5 ,0) by X-ray diffraction and the atomic pair distribution function technique. Chem. Mater. 18 (2006) 814-821.
-
(2006)
Chem. Mater
, vol.18
, pp. 814-821
-
-
Petkov, V.1
Gateshki, M.2
Niederberger, M.3
Ren, Y.4
-
18
-
-
9244222738
-
Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis
-
Gateshki, M.; Hwang, S.-J.; Park, D. H.; Ren. Y.; Petkov, V.: Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis. Chem. Mater. 16 (2004) 5153-5157.
-
(2004)
Chem. Mater
, vol.16
, pp. 5153-5157
-
-
Gateshki, M.1
Hwang, S.-J.2
Park, D.H.3
Ren, Y.4
Petkov, V.5
-
19
-
-
34249697101
-
Titania Polymorphs by soft chemistry: Is there a common structural pattern?
-
Gateshki, M.; Yin, S.; Ren, Y.; Petkov, V.: Titania Polymorphs by soft chemistry: Is there a common structural pattern? Chem. Mater. 19 (2007) 2512-2518.
-
(2007)
Chem. Mater
, vol.19
, pp. 2512-2518
-
-
Gateshki, M.1
Yin, S.2
Ren, Y.3
Petkov, V.4
-
23
-
-
0000379650
-
RAD, a program for analysis of X-ray diffraction data from amorphous materials for personal computers
-
Petkov, V.: RAD, a program for analysis of X-ray diffraction data from amorphous materials for personal computers. J. Appl. Crystallogr. 22 (1989) 387
-
(1989)
J. Appl. Crystallogr
, vol.22
, pp. 387
-
-
Petkov, V.1
-
25
-
-
0000998690
-
PDFFIT, a program for full profile structural refinement of the atomic pair distribution function
-
Proffen, Th.; Billinge, S. J. L.: PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J. Appl. Crystallogr. 32 (1999) 572-575.
-
(1999)
J. Appl. Crystallogr
, vol.32
, pp. 572-575
-
-
Proffen, T.1
Billinge, S.J.L.2
-
26
-
-
36949022187
-
-
The building blocks of the lepidocrocite model are smaller than those of the trititanate one and, hence, require less rotation/translation when used to build a nanotube wall. In this way, Ti-Ti distances between adjacent octahedra remain close to those in flat layers as seen in the hardly changing 3.1 and 3.7 Å PDF peak of the lepidocrocite model.
-
The building blocks of the lepidocrocite model are smaller than those of the trititanate one and, hence, require less rotation/translation when used to build a nanotube wall. In this way, Ti-Ti distances between adjacent octahedra remain close to those in flat layers as seen in the hardly changing 3.1 and 3.7 Å PDF peak of the lepidocrocite model.
-
-
-
|